R语言预测期货波动率的实现:ARCH与HAR-RV与GARCH,ARFIMA模型比较

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: R语言预测期货波动率的实现:ARCH与HAR-RV与GARCH,ARFIMA模型比较

波动率是众多定价和风险模型中的关键参数,例如BS定价方法或风险价值的计算。在这个模型中,或者说在教科书中,这些模型中的波动率通常被认为是一个常数。然而,情况并非如此,根据学术研究,波动率是具有聚类,厚尾和长记忆特征的时间序列变量。

本博客比较了GARCH模型(描述波动率聚类),ARFIMA模型( 长记忆),HAR-RV模型(基于高频数据 ),以及来自SSE 50指数和CME利率期货的样本。

此外,本文使用滚动时间窗预测方法来计算预测波动率并构建指数以评估模型的准确性。结果表明,基于长记忆和实现波动率的ARFIMA-RV模型是最准确的模型。

1.基于GARCH的模型

描述波动率聚类

为了模拟异方差性,GARCH采用以下过程:

为了反映金融市场的不对称性,学者们提出了EGARCH,TGARCH或APARCH,其中APARCH更为一般。

我们从在R中拟合APARCH开始:

可以看出ARCH效应是显而易见的

我们可以得到模型的系数,以及误差分析

为了进一步分析模型,我们分析了QQ图中的正态性残差。

我们发现残差不符合正态性,然后我们测试残差的自相关:

测试对于上面列出的模型,所有残差都具有一些自相关效应。因此,基于GARCH的模型可能不够准确,无法预测波动性。

我们使用MSE(误差的均方)来测量模型的预测性能。

MSE.NGARCH

0.000385108313676526

MSE.tGARCH

0.00038568802365854

MSE.APARCH

0.000385278917823468

2.基于HAR-RV的模型

处理高频实际波动率

高频数据包含更丰富的日内交易信息,因此可用于衡量波动率。实现波动是其中一种方式。如果我们将交易日_t_划分为_N个_时段,每个时段都会有一个对数收益率,那么实际收益可以计算如下:

HAR-RV,异构自回归RV模型由科希创建。

MSE计算如下

MSE.HARRV 1.08226110318177 * 10 ^( - 7)
MSE.HARRVCJ 1.90270268315141 * 10 ^( - 7)

3.基于ARFIMA的模型

描述长记忆

ARFIMA是分整自回归移动平均模型,其具有与ARMA模型相同的表示形式,但差分参数d可以是非整数值:

在差分参数d是非整数的情况下,则可以如下操作

在R中,我们编程探索HAR-RV和HAR-RV-CJ模型。

MSE如下所列

MSE.ARFIMA1 1.0663781087345 * 10 ^( - 7)
MSE.ARFIMA2 1.06634734745652 * 10 ^( - 7)
MSE.ARFIMA3 1.06846983445809 * 10 ^( - 7)

结论


SH50 S&P500
MSE.NGARCH 0.000385108314 7.793024760363 * 10 ^( - 5)
MSE.tGARCH 0.000385688024 7.803986179542 * 10 ^( - 5)
MSE.APARCH 0.000385278919 7.781641356006 * 10 ^( - 5)
MSE.HARRV 1.082261103181 * 10 ^( - 7) 1.459464289508 * 10 ^( - 9)
MSE.HARRVCJ 1.902702683151 * 10 ^( - 7) N / A(没有足够的数据)
MSE.ARFIMA1 1.066378108737 * 10 ^( - 7) 1.820349558502 * 10 ^( - 8)
MSE.ARFIMA2 1.066347347457 * 10 ^( - 7) 1.848206765296 * 10 ^( - 8)
MSE.ARFIMA3 1.068469834458 * 10 ^( - 7) 1.844987432992 * 10 ^( - 8)

从结果我们知道基于ARFIMA的模型具有与HAR-RV相似的准确度,并且两者都比GARCH模型好得多。

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
4天前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
4天前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
4天前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
4天前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
4天前
|
Web App开发 数据可视化 数据挖掘
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
|
4天前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
4天前
利用R语言进行典型相关分析实战
利用R语言进行典型相关分析实战
|
4天前
|
移动开发 数据可视化
广义线性模型beta二项分布的淋巴结疾病风险预测可视化R语言2实例合集|附数据代码
广义线性模型beta二项分布的淋巴结疾病风险预测可视化R语言2实例合集|附数据代码
|
4天前
|
机器学习/深度学习 数据可视化
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
|
4天前
|
机器学习/深度学习 算法
R语言分类回归分析考研热现象分析与考研意愿价值变现
R语言分类回归分析考研热现象分析与考研意愿价值变现

热门文章

最新文章