MATLAB用GARCH模型对股票市场收益率时间序列波动的拟合与预测

简介: MATLAB用GARCH模型对股票市场收益率时间序列波动的拟合与预测

描述

使用 garch 指定一个单变量GARCH(广义自回归条件异方差)模型。

garch 模型的关键参数包括:

  • GARCH 多项式,由滞后条件方差组成。阶数用_P_表示 。
  • ARCH多项式,由滞后平方组成。阶数用_Q_表示 。

PQ 分别是 GARCH 和 ARCH 多项式中的最大非零滞后。其他模型参数包括平均模型偏移、条件方差模型常数和分布。

所有系数都是未知(NaN 值)和可估计的。

示例: 'ARCHLags',[1 4],'ARCH',{NaN NaN} 指定 GARCH(0,4) 模型和未知但非零的 ARCH 系,滞后 14

例子

创建默认 GARCH 模型

创建默认 garch 模型对象并指定其参数值。

创建 GARCH(0,0) 模型。

garch

Md 是一个 garch 模型。它包含一个未知常数,其偏移量为 0,分布为 'Gaussian'。该模型没有 GARCH 或 ARCH 多项式。

为滞后 1 和滞后 2 指定两个未知的 ARCH 系数。

ARCH = {NN NN}

QARCH 性能更新为 2{NaN NaN}。两个 ARCH 系数与滞后 1 和滞后 2 相关联。

创建 GARCH 模型

garch 创建 模型 garch(P,Q),其中 P 是 GARCH 多项式的阶数, Q 是 ARCH 多项式的阶数。

创建 GARCH(3,2) 模型

garch(3,2)

Md 是一个 garch 模型对象。 Md的所有属性,除了 PQDistribution,是 NaN 值。默认情况下:

  • 包括条件方差模型常数
  • 排除条件平均模型偏移(即偏移为 0
  • 包括 ARCH 和 GARCH 滞后运算符多项式中的所有滞后项,分别达到滞后 QP

Md仅指定 GARCH 模型的函数形式。因为它包含未知的参数值,您可以通过 Md 和时间序列数据 estimate 来估计参数。

使用参数创建 GARCH 模型

garch 使用名称-值对参数创建 模型。

指定 GARCH(1,1) 模型。默认情况下,条件平均模型偏移为零。指定偏移量为 NaN

grch('GRCHas',1,'CHLas',1,'Oset',aN)

Md 是一个 garch 模型对象。

由于 Md包含 NaN 值, Md仅适用于估计。将 Md时间序列数据传递给 estimate.

创建具有已知系数的 GARCH 模型

创建一个具有平均偏移量的 GARCH(1,1) 模型,

yt=0.5+εt,

其中 εt=σtzt,

σ2t = 0.0001 + 0.75σ2t − 1 + 0.1ε2t − 1,

zt 是一个独立同分布的标准高斯过程。

garh('Conant',00001,'GACH',0.75,...
    'AR H ,0.1,'Ofet'0.5)

访问 GARCH 模型属性

创建 garch 模型对象。

garch(3,2)

从模型中删除第二个 GARCH 项。即,指定第二个滞后条件方差的 GARCH 系数为 0

GAH{2} = 0

GARCH 多项式有两个未知参数,分别对应滞后 1 和滞后 3。

显示扰动的分布。

Ditiuton

扰动是均值为 0 且方差为 1 的高斯扰动。

指定基础 IID 扰动具有  五个自由度的_t_分布。

dl.Dirbton = trut('Nme','t','DF',5)

指定第一个滞后的 ARCH 系数为 0.2,第二个滞后的 ARCH 系数为 0.1。

ACH = {0.2 0.1}

要估计残差的参数,您可以将Md数据传递 给 estimate 指定的参数并将其用作等式约束。或者,您可以指定其余的参数值,然后通过将完全指定的模型分别传递给simulate 或 来模拟或预测 GARCH 模型的条件方差 forecast

估计 GARCH 模型

将 GARCH 模型拟合到 1922-1999 年股票收益率的年度时间序列。

加载 Data数据集。绘制收益率 ( nr)。

RN;
fiure;
plot(daes,nr;
hod n;
pot(\[dtes(1) dtes(n

收益序列似乎具有非零条件平均偏移,并且似乎表现出波动聚集。也就是说,较早年份的变异性小于晚年的变异性。对于此示例,假设 GARCH(1,1) 模型适用于该序列。

创建 GARCH(1,1) 模型。默认情况下,条件平均偏移为零。要估计偏移量,请将其指定为 NaN

garh('GCHags',1,'ARHLgs',1,'Ofst',Na);

将 GARCH(1,1) 模型拟合到数据。

eimae(dl,r);

Est是一个完全指定的 garch 模型对象。也就是说,它不包含 NaN 值。您可以通过使用 生成残差infer,然后对其进行分析来评估模型的充分性 。

要模拟条件方差或序列,请传递 Estsimulate

要预测分布,请 Est转到 forecast.

模拟 GARCH 模型观察序列和条件方差

从完全指定的garch 模型对象模拟条件方差或序列路径 。也就是说,从估计garch 模型或已知 garch 模型(您在其中指定所有参数值)进行模拟 。

加载 Data 数据集。

RN;

创建具有未知条件平均偏移量的 GARCH(1,1) 模型。将模型拟合到年度收益序列。

gach('GCHLgs',1,ARCLgs',1,Ofet',Na);
Est = esiae(Mnr);

从估计的 GARCH 模型模拟每个时期的 100 条条件方差和序列路径。

mOb = nul(n); % 样本大小(T)
nuths = 100;     % 要模拟的路径数
rg(1);             % 用于重现
\[Vim,Sm\] = simae(EMdl,nuOs,NumPts,umPts);

VSimYSimT-by- numPaths 矩阵。行对应一个采样周期,列对应一个模拟路径。

绘制模拟路径的平均值以及 97.5% 和 2.5% 的百分位数。将模拟统计数据与原始数据进行比较。

Var = men(Vim,2);
VSI = quntie(Vi,\[0.025 0.975\],2);
Ymar = man(YSm,2);
YCI = qatle(Sim,\[0.025 0.975\],2);
pot(ae,im,);
hld on;
h2 = plt(des,Viar);
h =plo(ats,VSiCI,
hld off;

预测 GARCH 模型条件方差

从完全指定的garch 模型对象预测条件方差 。也就是说,根据估计garch 模型或garch 您指定所有参数值的已知 模型进行预测 。

加载 Data 数据集。

RN;

创建具有未知条件平均偏移量的 GARCH(1,1) 模型,并将该模型拟合到年度收益率序列。

dl = grh('GCas',1,'AHas',1,'Ofet',aN);
Edl = esate(dl,r);

使用估计的 GARCH 模型预测未来 10 年收益率序列的条件方差。将整个收益系列指定为样本前观察。软件使用样本前观测值和模型推断样本前条件方差。

numPeiods = 10;
F = foeast(EtMdl,uPes,nr);

绘制名义收益的预测条件方差。将预测与观察到的条件方差进行比较。

fgure;
pot(dtes);
hld n;
pot(dts(ed):ds(ed) + 10,\[v(nd);vF\]);

参考

[1] Tsay,_金融时间序列的_RS _分析_。第 3 版。John Wiley & Sons, Inc.,2010 年。


相关文章
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
189 80
|
29天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2月前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
176 13
|
2月前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
2月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
3月前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。

热门文章

最新文章