R语言因子实验设计nlme拟合非线性混合模型分析有机农业施氮水平

简介: R语言因子实验设计nlme拟合非线性混合模型分析有机农业施氮水平

测试非线性回归中的交互作用

因子实验在农业中非常普遍,它们通常用于测试实验因素之间相互作用的重要性。例如,可以在两种不同的施氮水平(例如高和低)下进行基因型评估,以了解基因型的排名是否取决于养分的可用性。对于那些不太了解农业的人,我只会说这样的评估是相关的,因为我们需要知道我们是否可以推荐相同的基因型,例如,在传统农业(高氮可用性)和有机农业中农业氮的可用性。

让我们考虑一个实验,在该实验中,我们在完整的区组因子设计中以两种氮含量(“高”和“低”)测试了三种基因型(为了简便起见,我们称它们为 A、B 和 C),并进行四次重复。在八个不同的时间(播种后天数:DAS)从 24 个地块中的每一个中取出生物量子样本,以评估生物量随时间的增长。

加载数据并将“Block”变量转换为一个因子。

head(dataset)

数据集由以下变量组成:

  • 'Id':观察的数字代码
  • 'DAS':即播种后的天数。这是采集样本的时刻
  • 'Block', 'Plot', 'GEN' 和 'N' 分别代表每个观察的块、图、基因型和氮水平
  • “产量”代表收获的生物量。

查看观察到的增长数据,如下图所示。

我们看到增长是对称的(大概是逻辑的)并且观察的方差随着时间的推移而增加,即方差与期望因变量成正比。

问题是:我们如何分析这些数据?




01

02

03

04




模型

我们可以凭经验假设生物量和时间之间的关系是逻辑的:

其中Y是第i个基因型、第j个氮水平、第k个区块和第l个小区在X时间观察到的生物量产量,d是时间进入无穷大时的最大渐进生物量水平,b是拐点处的斜率,而e是生物量产量等于d/2时的时间。我们主要对参数d和e感兴趣:第一个参数描述基因型的产量潜力,而第二个参数给出生长速度的测量。

每个小区都有重复测量,因此,模型参数可能显示出一些变化,取决于基因型、氮水平、区块和小区。特别是,假设b是相当恒定的,并且独立于上述因素,而d和e可能根据以下公式发生变化,这是可以接受的。

其中,对于每个参数,μ是截距,g是第i个基因型的固定效应,N是第j个氮水平的固定效应,gN是固定交互效应,θ是区块的随机效应,而ζ是区块内地块的随机效应。这两个方程完全等同于通常用于线性混合模型的方程,在双因素因子区块设计的情况下,其中ζ是残差误差项。事实上,原则上,我们也可以考虑两步法的拟合程序,即我们。

  • 将逻辑模型拟合到每个图的数据并获得 d 和 e 的估计值
  • 使用这些估计来拟合线性混合模型

我们不会在这里追求这种两步法,我们将专注于一步拟合。

错误的方法

如果观察是独立的(即没有块和没有重复测量),这个模型可以通过使用传统的非线性回归来拟合。

编码报告如下。产量 "是(∼)DAS的函数,通过一个三参数的Logistic函数。对于基因型和氮水平的不同组合必须拟合不同的曲线(id = N:GEN),尽管这些曲线应该部分地基于共同的参数值('models = ...)。model"参数需要一些补充说明。它必须是一个矢量,其元素数与模型中的参数数一样多(在本例中是三个:B、D和E)。每个元素代表一个变量的线性函数,并按字母顺序指向参数,即第一个元素指b,第二个指d,第三个指e。参数b不依赖于任何变量('~1'),因此在不同的曲线上拟合出一个常数;d和e依赖于基因型和氮水平的完全因子组合(~N*GEN = ~N + GEN + N:GEN)。最后,我们使用参数'bcVal = 0.5'来指定我们打算使用转换两边方法,即对方程的两边进行对数转换。这对于考虑异方差是必要的,但它不影响参数估计。

rm(Yield ~ DAS, dta =daas,
           id = GEN:N,
            model = c( ~ 1,  ~ N\*GEN,  ~ N\*GEN))

这个模型对于其他情况(无区块和无重复测量)可能是有用的,但在我们的例子中是错误的。事实上,观测值在区块和地块内是聚在一起的;如果忽略这一点,我们就违反了模型残差独立的假设。残差与拟合值的图显示,不存在异方差的问题。

考虑到上述情况,我们必须在这里使用不同的模型,尽管我将证明这种拟合可能会很有用。

非线性混合模型拟合

为了解释观察的类,我们切换到非线性混合效应模型(NLME)。一个不错的选择是'nlme()' 函数(Pinheiro 和 Bates,2000),尽管有时语法可能很麻烦。我们需要指定以下内容:

  • 模型参数的线性函数。nlme'函数中的'fixed'参数与上面函数中的'models'参数非常相似,即它需要一个列表,其中每个元素都是变量的线性函数。唯一的区别是,参数名称需要在函数的左侧指定。
  • 模型参数的随机效应。这些是通过使用 "随机 "参数来指定的。在这种情况下,参数d和e有望在一个区块内的不同区块和不同地块之间显示随机变化。为了简单起见,由于参数b不受基因型和氮水平的影响,我们也希望它在区块和地块之间不显示任何随机变化。
  • 模型参数的起始值。我们需要指定模型参数的初始值。在这种情况下,我决定使用上面非线性回归的输出。

方程两边的变换。

nlme(sqtYld ~ srtLS.L3(DAS, b, d, e)
tTable

从上图中,我们看到整体拟合良好。随机效应的固定效应和方差分量按如下方式获得:

summary(mdnle1)

现在,让我们回到我们最初的目的:测试 "基因型x氮 "交互作用的显著性。事实上,我们有两个可用的测试:一个是参数d,一个是参数e。首先,我们对两个 "简化 "模型进行编码。为此,我们把固定效应从'~ N*GEN'改为'~ N + GEN'。同样在这种情况下,我们使用非线性回归拟合来获得模型参数的起始值,用于下面的NLME模型拟合。

mdNave2 <- Yied ~ DAS
            modes = c( ~ 1,  ~ N + GEN,  ~ N * GEN
mdnle2 <-sqrt(Yeld) ~ sqrt(NS.3(DAS, b, d, e
mdaie3 <- Yied ~ DAS
            crid = N:GEN
            modls = c( ~ 1,  ~ N*GEN,  ~ N + GEN
mdne3 <- sqrt(Yild) ~ sqrt(NS.L3(DAS, b, d, e
                    ranom = d + e~ 1|Blck/Pot
                    fixd = lit(b ~ 1 d ~ N*GN, e ~ N + GN)

让我们考虑第一个缩小的模型'modnlme2'。在这个模型中,"基因型x氮 "的交互作用已经被移除,用于d参数。我们可以通过使用似然比检验来比较这个模型和完整的模型 "modnlme1"。

aova(mode1, mdne2)

该检验是显著的,但两个模型的AIC值非常接近。考虑到混合模型中的LRT通常比较宽松,应该可以得出结论,"基因型x氮素 "的交互作用不显著,因此,用d参数衡量的基因型在产量潜力方面的排名应该与氮素水平有关。

现在让我们考虑第二个简化模型“modnlme3”。在第二个模型中,“e”参数的“基因型 x 氮”交互作用已被删除。我们还可以使用似然比检验将此简化模型与完整模型“modnlme1”进行比较:

anva(mole1, mdle3)

在这第二次检验中,"基因型x氮素 "交互作用的不显著性似乎比第一次检验更可信。


相关实践学习
使用DAS实现数据库自动扩容和回缩
暂无
相关文章
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
4月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
5月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
8月前
R语言表与因子(详细知识点,深入知识点后续会补充!)
R语言表与因子(详细知识点,深入知识点后续会补充!)
52 2
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
3月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
65 3
|
8月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
8月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
4月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
下一篇
开通oss服务