Python用T-SNE非线性降维技术拟合和可视化高维数据iris鸢尾花、MNIST 数据

简介: Python用T-SNE非线性降维技术拟合和可视化高维数据iris鸢尾花、MNIST 数据

T-distributed Stochastic Neighbor Embedding (T-SNE) 是一种可视化高维数据的工具。T-SNE 基于随机邻域嵌入,是一种非线性降维技术,用于在二维或三维空间中可视化数据。

Python API 提供  T-SNE 方法可视化数据。在本教程中,我们将简要了解如何在 Python 中使用 TSNE 拟合和可视化数据。教程涵盖:

  • 鸢尾花数据集TSNE拟合与可视化
  • MNIST 数据集 TSNE 拟合和可视化

我们将从加载所需的库和函数开始。

import seaborn as sns
import pandas as pd

鸢尾花数据集TSNE拟合与可视化

加载 Iris 数据集后,我们将获取数据集的数据和标签部分。

x = iris.data
y = iris.target

然后,我们将使用 TSNE 类定义模型,这里的 n_components 参数定义了目标维度的数量。'verbose=1' 显示日志数据,因此我们可以检查它。

TSNE( verbose=1)

接下来,我们将在图中可视化结果。我们将在数据框中收集输出组件数据,然后使用“seaborn”库的 scatterplot() 绘制数据。在散点图的调色板中,我们设置 3,因为标签数据中有 3 种类型的类别。

df = p.Dtame()
df\["\] = y
df\["cm"\] =z:,0
:,0
df\[cop"\] = z,
,
plot(hue=dfytlst()
                patte=ns.cor_ptt("hls", 3),
                dat=df)

MNIST 数据集 TSNE 拟合和可视化

接下来,我们将把同样的方法应用于更大的数据集。MNIST手写数字数据集非常合适,我们可以使用Keras API的MNIST数据。我们只提取数据集的训练部分,因为这里用TSNE来测试数据就足够了。TSNE需要太多的时间来处理,因此,我将只使用3000行。

01

02

03

04




x_train= xtrin\[:3000\]
y_rin = ytrin\[:3000\]
print(x_train.shape)

MNIST 是一个三维数据,我们将其变形为二维数据。

print(xtishpe)
x\_nit = rshap(\_rin, \[xran.shap0
0,xtrn.shap\[1\]*xrin.shap\[2\])
print(x_mit.shape)

在这里,我们有 784 个特征数据。现在,我们将使用 TSNE 将其投影到二维中,并在图中将其可视化。

z = tsne.fit(x_mnist)
df\["comp1"\] = z\[:,0\]
df\["comp2"\] = z\[:,1\]
plot(huedf.tit(),
                ata=f)

该图显示了 MNIST 数据的二维可视化。颜色定义了目标数字及其在 2D 空间中的特征数据位置。

在本教程中,我们简要地学习了如何在 Python 中使用 TSNE 拟合和可视化数据。


相关文章
|
1月前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
17天前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
19天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
28天前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
19天前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
191 102
|
19天前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
193 104
|
19天前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
182 103
|
19天前
|
机器学习/深度学习 人工智能 数据挖掘
Python:现代编程的首选语言
Python:现代编程的首选语言
129 82
|
19天前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的多面手
Python:现代编程的多面手
30 0
|
28天前
|
存储 人工智能 算法
Python实现简易成语接龙小游戏:从零开始的趣味编程实践
本项目将中国传统文化与编程思维相结合,通过Python实现成语接龙游戏,涵盖数据结构、算法设计与简单AI逻辑,帮助学习者在趣味实践中掌握编程技能。
103 0

热门文章

最新文章

推荐镜像

更多