引言
结构方程模型是一个线性模型框架,它对潜变量同时进行回归方程建模。 诸如线性回归、多元回归、路径分析、确认性因子分析和结构回归等模型都可以被认为是SEM的特例。在SEM中可能存在以下关系。
- 观察到的变量与观察到的变量之间的关系(γ,如回归)。
- 潜变量与观察变量(λ,如确认性因子分析)。
- 潜变量与潜变量(γ,β,如结构回归)。
SEM独特地包含了测量和结构模型。测量模型将观测变量与潜变量联系起来,结构模型将潜变量与潜变量联系起来。目前有多种软件处理SEM模型,包括Mplus、EQS、SAS PROC CALIS、Stata的sem和最近的R的lavaan。R的好处是它是开源的,可以免费使用,而且相对容易使用。
本文将介绍属于SEM框架的最常见的模型,包括
- 简单回归
- 多元回归
- 多变量回归
- 路径分析
- 确认性因素分析
- 结构回归
目的是在每个模型中介绍其
- 矩阵表述
- 路径图
lavaan语法
- 参数和输出
在这次训练结束时,你应该能够理解这些概念,足以正确识别模型,认识矩阵表述中的每个参数,并解释每个模型的输出。
语法简介
语法一:f3~f1+f2(路径模型)
结构方程模型的路径部分可以看作是一个回归方程。而在R中,回归方程可以表示为y~ax1+bx2+c,“~”的左边的因变量,右边是自变量,“+”把多个自变量组合在一起。那么把y看作是内生潜变量,把x看作是外生潜变量,略去截距,就构成了语法一。
语法二:f1 =~ item1 + item2 + item3(测量模型)
"=~"的左边是潜变量,右边是观测变量,整句理解为潜变量f1由观测变量item1、item2和item3表现。
语法三:item1 item1 , item1 item2
"~~"的两边相同,表示该变量的方差,不同的话表示两者的协方差
语法四:f1 ~ 1
表示截距
基础知识
加载数据
在这种情况下,我们将模拟数据。
y ~ .5*f #有外部标准的回归强度 f =~ .8\*x1 + .8\*x2 + .8\*x3 + .8\*x4 + .8*x5 #定义因子f,在5个项目上的载荷。 x1 ~~ (1-.8^2)*x1 #残差。请注意,通过使用1平方的载荷,我们在每个指标中实现了1.0的总变异性(标准化的)。 ...... #产生数据;注意,标准化的lv是默认的 simData #看一下数据 describe(simData)\[,1:4\]
指定模型
y ~ f # "~回归" f =~ x1+ x2 + x3 + x4 + x5 # "=~被测量的是" x1 ~~ x1 # 方差 x2 ~~ x2 #方差 x3~~x3 #变量 x4~~x4 #变量 x5~~x5 #变量 #x4~~x5将是协方差的一个例子
拟合模型
summary(model_m)
inspect(model_m)
Paths
路径分析
与上述步骤相同,但主要侧重于回归路径。值得注意的是这种方法对调节分析的效用。
##加载数据 set.seed(1234) Data <- data.frame(X = X, Y = Y, M = M)
指定模型
# 直接效应 Y ~ c*X #使用字符来命名回归路径 # 调节变量 M ~ a*X Y ~ b*M # 间接效应(a*b) ab := a*b #定义新参数 # 总效应 total := c + (a*b) #使用":="定义新参数
拟合模型
summary(model_m)
Paths(model)
间接效应的Bootstrapping置信区间
除了指定对5000个样本的标准误差进行bootstrapping外,下面的语法还指出标准误差应进行偏差校正(但不是accelearted)。这种方法将产生与SPSS中的PROCESS宏程序类似的结果,即对标准误差进行偏差修正。
sem(medmodel,se = "bootstrap")