电力消耗模型构建、分析和预测

简介: 电力消耗模型构建、分析和预测

某制药公司每年要花费大量的资金在电费上,由于电力公司的业务改革,该药企可以在一年或月开始时向电力公司预购一定数量的电力,如果实际消耗大于该值,则每多消耗一度电要付比以前更多的电费,如果实际上没有消耗这么多,也不会退还多余的电费,因此该公司打算预测未来的电力消耗以节省资金消耗。

解决方案

任务/目标

根据制药公司要求,运用多种数据源分析实现精准电力消耗预测。

数据源准备

为了预测电力的消耗,将电的主要使用分为生产车间的消耗,空调的电力消耗和其它消耗,其它消耗视为一个常量,在最后添加上去。

数据处理

在实际收到的数据中,有很多日期的某些电表的耗电量和某些车间的产量并没有被记录下来,因此使用拉格朗日插值法来补足中间的缺口。

特征转换

把不能处理的特征做一些转换,处理成算法容易处理的干净特征举例如下:

时间属性。就时间属性本身来说,对模型来说不具有任何意义,需要把日期转变成到天,年、月、日、周伪变量。

电量属性。由于收集的是单一电表的数据指标,所以合并相同类型的数据,作为车间和空调的总耗电来参与模型建设。

产量属性。由于车间生产了数种药品,且不同药品的每箱重量不同。有的工序的耗电量只和重量有关,有的工序的耗电量之和箱数有关,因此我们两种计量方式都要用上。

构造

划分训练集和测试集

考虑到最终模型会预测将来的某时间段的耗电量,为了更真实的测试模型效果,以时间来切分训练集和测试集。具体做法如下:用软件随机划分80%的数据作为训练集,剩下的20%作为测试集。

建模

一元线性回归在考虑一些工序的耗电时,容易发现机器的耗电量和产量是呈线性关系的,此时就使用一元线性回归模型来拟合。(y=kx+b)

一元非线性回归,在工厂里为了维持生产车间的恒温,使用气暖和空调来进行调温。气暖消耗的是蒸汽,只有空调才会耗电。当室内温度高于一定值时,空调才会开启;室内的温度越高,空调的功率越大,因此空调耗电和气温是一元非线性关系。(y=f(x))

多元线性回归,有的生产工序不仅仅和产品的重量有关,还和产品的箱数有关,此时就使用二元线性模型来拟合。(z=k1x+k2y+b)

模型优化

1.上线之前的优化:特征提取,样本抽样,参数调参。

2.上线之后的迭代,根据实际的A / B测试和业务人员的建议改进模型

项目结果

在此案例中,分别用三种模型来计算耗电量的三个分量。

用一元非线性回归,计算空调耗电量,其可视化图形如下,其中这里的气温是日最高气温(关系式省略):

用一元线性回归,计算出部分机器的耗电量和

产量的关系图形如下(关系式省略):

这是三种机器的耗电量和产量的关系图,可以看到当产量为0时,机器待机时也有一定的耗电量。

用二元线性回归模型,计算出最后一种机器和产品重量和箱数的关系:

上面是截面图,下面是散点图

可以看出,几种耗电量的模型基本都可以较完美的拟合实际情况,置信度都有95%以上。这个模型主要有两个用途,一是预测,就可以利用模型和计划产量等因素来预测未来的耗电量,从而实现精确购电。二是异常检测,如果有一天预测值和实际耗电量有较大偏差的时候,说明机器很可能出现了故障,要及时检修。

预测模型仅仅是算法计算下的结果,在实际生活中,这样的预测值仅仅只能作为参考,在实际生活中还有更多的因素影响结果,需要从多方面来考量。


相关文章
|
3月前
|
数据采集 数据可视化 物联网
数据工程师必看:10大主流数据清洗工具全方位功能对比
面对杂乱数据,高效清洗是分析关键。本文盘点10款主流工具:从企业级Informatica、Talend,到业务友好的Alteryx、Tableau Prep,技术向的Python、Nifi,再到轻量级Excel+Power Query,覆盖各类场景。帮你选对工具,提升效率,告别无效加班。
数据工程师必看:10大主流数据清洗工具全方位功能对比
|
机器学习/深度学习 人工智能 算法
一文了解人工智能中常用的优化算法
优化算法包含很多种,如果按梯度类型进行划分,可以分为有梯度优化算法和无梯度优化算法,在大多数人工智能技术中常用有梯度优化算法,当然也会有些场景也会用到无梯度优化算法,比如在强化学习中会用到黑盒优化算法cma-es、贝叶斯优化等,有些时候也会用到遗传算法和粒子群优化算法。本文主要讲解机器学习\深度学习中一些常用的优化算法,梯度下降法、动量法momentum、Adagrad、RMSProp、Adadelta、Adam,介绍不同算法之间的关联和优缺点,后续会继续分享其他的算法,
一文了解人工智能中常用的优化算法
|
4月前
|
机器学习/深度学习 数据采集 边缘计算
【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现)
【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现)
198 15
|
5月前
|
JavaScript 开发工具 虚拟化
配置DevEco Studio的开发环境时,需要注意什么?
配置DevEco Studio的开发环境时,需要注意什么?
|
11月前
|
数据采集 人工智能 供应链
《AI赋能工业制造:开启智能生产新时代》
在新一轮科技革命中,人工智能(AI)与工业制造深度融合,推动制造业迈向智能化、数字化新时代。AI通过智能生产调度、设备故障预测、质量检测和供应链优化等应用,显著提升效率和创新能力。特斯拉和富士康的智能工厂展示了AI在实际生产中的巨大潜力。然而,数据质量、技术集成和人才短缺等问题仍需解决。未来,AI将与5G、物联网等技术融合,进一步推动工业制造全面升级。
719 9
|
缓存 负载均衡 监控
微服务架构下的接口性能优化策略####
在当今快速迭代的软件开发领域,微服务架构以其灵活性和可扩展性成为众多企业的首选。然而,随着系统复杂性的增加,接口性能问题日益凸显,成为制约用户体验与系统稳定性的关键因素。本文旨在探讨微服务架构下接口性能优化的有效策略,通过具体案例分析,揭示从代码层面到系统架构层面的全方位优化路径,为开发者提供实战指南。 ####
|
监控 安全 数据可视化
Grafana 安全性和权限管理
【8月更文第29天】Grafana 是一个广泛使用的开源平台,用于可视化和监控时间序列数据。随着 Grafana 在生产环境中的广泛采用,确保其安全性变得至关重要。本文将探讨如何配置 Grafana 的访问控制和安全设置以保护敏感数据,并提供一些具体的代码示例。
1752 3
|
Shell 网络安全 开发工具
mac或windows下的git环境配置
mac或windows下的git环境配置
547 0
|
存储 JSON API
淘宝订单接口对接实战(续):高级功能与实战案例
在上一篇文章中,我们详细介绍了如何对接淘宝订单接口的基础知识,包括API申请、环境准备以及基础的API调用。本文将在此基础上,进一步探讨淘宝订单接口的高级功能,并通过实战案例,演示如何在实际业务场景中应用这些功能,全文约5000字。
uni-app中如何解决跨域问题
uni-app中如何解决跨域问题
2969 0