R语言Lasso回归模型变量选择和糖尿病发展预测模型

简介: R语言Lasso回归模型变量选择和糖尿病发展预测模型

Lease Absolute Shrinkage and Selection Operator(LASSO)在给定的模型上执行正则化和变量选择。根据惩罚项的大小,LASSO将不太相关的预测因子缩小到(可能)零。因此,它使我们能够考虑一个更简明的模型。在这组练习中,我们将在R中实现LASSO回归。

练习1

加载糖尿病数据集。这有关于糖尿病的病人水平的数据。数据为n = 442名糖尿病患者中的每个人获得了10个基线变量、年龄、性别、体重指数、平均血压和6个血清测量值,以及感兴趣的反应,即一年后疾病进展的定量测量。"







接下来,加载包用来实现LASSO。

head(data)


向下滑动查看结果

练习2

数据集有三个矩阵x、x2和y。x是较小的自变量集,而x2包含完整的自变量集以及二次和交互项。

检查每个预测因素与因变量的关系。生成单独的散点图,所有预测因子的最佳拟合线在x中,y在纵轴上。用一个循环来自动完成这个过程。







summary(x)

for(i in 1:10){

 plot(x\[,i\], y)

 abline(lm(y~x\[,i\])

}


向下滑动查看结果

练习3

使用OLS将y与x中的预测因子进行回归。我们将用这个结果作为比较的基准。







lm(y ~ x)


向下滑动查看结果

练习4

绘制x的每个变量系数与β向量的L1准则的路径。该图表明每个系数在哪个阶段缩减为零。







plot(model_lasso)



向下滑动查看结果

练习5

得到交叉验证曲线和最小化平均交叉验证误差的lambda的值。







plot(cv_fit)


向下滑动查看结果

练习6

使用上一个练习中的lambda的最小值,得到估计的β矩阵。注意,有些系数已经缩减为零。这表明哪些预测因子在解释y的变化方面是重要的。







> fit$beta


向下滑动查看结果


练习7

为了得到一个更简明的模型,我们可以使用一个更高的λ值,即在最小值的一个标准误差之内。用这个lambda值来得到β系数。注意,现在有更多的系数被缩减为零。







lambda.1se

beta



向下滑动查看结果

练习8

如前所述,x2包含更多的预测因子。使用OLS,将y回归到x2,并评估结果。







summary(ols2)



向下滑动查看结果


练习9

对新模型重复练习-4。







lasso(x2, y)plot(model_lasso1)


向下滑动查看结果

练习10

对新模型重复练习5和6,看看哪些系数被缩减为零。当有很多候选变量时,这是缩小重要预测变量的有效方法。







plot(cv_fit1)

beta


向下滑动查看结果



相关文章
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
4月前
|
数据采集
基于R语言的GD库实现地理探测器并自动将连续变量转为类别变量
【9月更文挑战第9天】在R语言中,可通过`gd`包实现地理探测器。首先,安装并加载`gd`包;其次,准备包含地理与因变量的数据框;然后,使用`cut`函数将连续变量转换为分类变量;最后,通过`gd`函数运行地理探测器,并打印结果以获取q值等统计信息。实际应用时需根据数据特点调整参数。
180 8
|
4月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
5月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
8月前
|
数据可视化
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码2
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
8月前
|
数据可视化 数据挖掘
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码1
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
8月前
|
机器学习/深度学习 数据可视化
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
|
8月前
|
机器学习/深度学习 数据采集 算法
数据分享|R语言机器学习预测案例合集:众筹平台、机票折扣、糖尿病患者、员工满意度
数据分享|R语言机器学习预测案例合集:众筹平台、机票折扣、糖尿病患者、员工满意度
下一篇
开通oss服务