Python贝叶斯回归分析住房负担能力数据集

简介: Python贝叶斯回归分析住房负担能力数据集

我想研究如何使用pymc3在贝叶斯框架内进行线性回归。根据从数据中学到的知识进行推断。

贝叶斯规则是什么?

本质上,我们必须将已经知道的知识与世界上的事实相结合。

这里有一个例子。

假设存在这种罕见疾病,每10,000人中就有1人随机感染这种疾病。换句话说,有0.01%的机会患上这种疾病。幸运的是,有一项测试可以99%的正确识别出患有这种疾病的人,如果没有这种疾病,它也可以正确地说出您99%没有患这种疾病。您参加了测试,结果为阳性。您有多少几率实际患上该病?

好吧,让我们从逻辑上考虑一下。我们知道,每10,000人中就有1人患此病。假设有10,000人。他们中的9,999人没有疾病,但其中1%的人会得到阳性结果。因此,即使只有1人实际患有这种疾病,也有约101人获得了阳性结果。这意味着即使结果为阳性,您也只有101分之一的几率实际患上该病(或大约1%的几率)。

数学描述  :

看起来很简单。实际上,这很简单。该公式仅需要一些概率分布的知识。但是实际上,右边的分母通常意味着我们将要计算很多真正的计算重积分。因此,贝叶斯统计被放弃了很多年。从某种意义上讲,它自然而然地脱离了概率论。如果我们只有擅长计算大量数字的东西,那么这类问题就可以解决。

计算机确实非常快地进行计算贝叶斯回归。

代码

这是进行贝叶斯回归所需的知识。通常,我们想到这样的回归:

e是正态分布的误差。

因此,我们假设:

与先验:

因此,如果我们拥有X和Y的数据,则可以进行贝叶斯线性回归。

代码

我们要使用的数据集是《  住房调查:2013年住房负担能力数据 》数据集。

我们感兴趣的是住房负担如何随着年龄而变化。AGE1包含户主的年龄。BURDEN是一个变量,它告诉我们住房费用相对于收入有多大。为简单起见,我们仅关注这两个变量。我们想知道的是,随着年龄的增长,住房负担会变得更容易吗?特别是,我们想知道斜率系数是否为负,并且由于我们处于贝叶斯框架中,因此该概率为负的概率是多少?

因此,我们将导入所需的库和数据。进行一些数据清理。

df=pd.read_csv('2013n.txt',sep=',')
df=df\[df\['BURDEN'\]>0\]
df=df\[df\['AGE1'\]>0\]

现在,让我们构建上面讨论的模型。让我们做一个散点图,看看数据是什么样子。

plt.scatter(df\['AGE1'\],df\['BURDEN'\])
plt.show()

结果如下:

住房负担很容易超过收入的10倍。

这是构建和运行模型的代码:

pm.traceplot(trace)
plt.show()

**看起来与我们上面的模型完全一样,不同之处在于我们还有一个正态分布的截距beta。现在我们的模型已经训练好了,我们可以继续做一些推论工作。

**

完成运行后,会看到类似以下内容:

可以看到,我们有斜率和截距的后验分布以及回归的标准偏差。

**住房负担会随着年龄的增长而减少吗?

**

是的。随着人们的建立,他们的住房成本将相对于收入下降。这将等于年龄变量的负斜率系数。运行以下代码,则可以找出斜率系数为负的确切概率。

print(np.mean(\[1 if obj<0 else 0 for obj in trace\['x'\]\]))

该系数为负的概率约为13.8%。

相关文章
|
1月前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
91 35
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
72 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
1月前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
303 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
27天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
128 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
1月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
87 37
Python时间序列分析工具Aeon使用指南
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
83 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
1月前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
128 80

热门文章

最新文章