R语言预测波动率的实现:ARCH模型与HAR-RV模型

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: R语言预测波动率的实现:ARCH模型与HAR-RV模型

波动率是众多定价和风险模型中的关键参数,例如BS定价方法或风险价值的计算。在这个模型中,或者说在教科书中,这些模型中的波动率通常被认为是一个常数。然而,情况并非如此,根据学术研究,波动率是具有聚类,厚尾和长记忆特征的时间序列变量。

本博客比较了GARCH模型(描述波动率聚类),ARFIMA模型( 长记忆),HAR-RV模型(基于高频数据 ),以及来自SSE 50指数和CME利率期货的样本。

此外,本文使用滚动时间窗预测方法来计算预测波动率并构建指数以评估模型的准确性。结果表明,基于长记忆和实现波动率的ARFIMA-RV模型是最准确的模型。

1.基于GARCH的模型

描述波动率聚类

为了模拟异方差性,GARCH采用以下过程:

为了反映金融市场的不对称性,学者们提出了EGARCH,TGARCH或APARCH,其中APARCH更为一般。

我们从在R中拟合APARCH开始:

可以看出ARCH效应是显而易见的

我们可以得到模型的系数,以及误差分析

为了进一步分析模型,我们分析了QQ图中的正态性残差。

我们发现残差不符合正态性,然后我们测试残差的自相关:

测试对于上面列出的模型,所有残差都具有一些自相关效应。因此,基于GARCH的模型可能不够准确,无法预测波动性。

我们使用MSE(误差的均方)来测量模型的预测性能。

MSE.NGARCH

0.000385108313676526

MSE.tGARCH

0.00038568802365854

MSE.APARCH

0.000385278917823468

2.基于HAR-RV的模型

处理高频实际波动率

高频数据包含更丰富的日内交易信息,因此可用于衡量波动率。实现波动是其中一种方式。如果我们将交易日_t_划分为_N个_时段,每个时段都会有一个对数收益率,那么实际收益可以计算如下:

HAR-RV,异构自回归RV模型由科希创建。

MSE计算如下

MSE.HARRV 1.08226110318177 * 10 ^( - 7)
MSE.HARRVCJ 1.90270268315141 * 10 ^( - 7)

3.基于ARFIMA的模型

描述长记忆

ARFIMA是分整自回归移动平均模型,其具有与ARMA模型相同的表示形式,但差分参数d可以是非整数值:

在差分参数d是非整数的情况下,则可以如下操作

在R中,我们编程探索HAR-RV和HAR-RV-CJ模型。

MSE如下所列

MSE.ARFIMA1 1.0663781087345 * 10 ^( - 7)
MSE.ARFIMA2 1.06634734745652 * 10 ^( - 7)
MSE.ARFIMA3 1.06846983445809 * 10 ^( - 7)

结论


SH50 S&P500
MSE.NGARCH 0.000385108314 7.793024760363 * 10 ^( - 5)
MSE.tGARCH 0.000385688024 7.803986179542 * 10 ^( - 5)
MSE.APARCH 0.000385278919 7.781641356006 * 10 ^( - 5)
MSE.HARRV 1.082261103181 * 10 ^( - 7) 1.459464289508 * 10 ^( - 9)
MSE.HARRVCJ 1.902702683151 * 10 ^( - 7) N / A(没有足够的数据)
MSE.ARFIMA1 1.066378108737 * 10 ^( - 7) 1.820349558502 * 10 ^( - 8)
MSE.ARFIMA2 1.066347347457 * 10 ^( - 7) 1.848206765296 * 10 ^( - 8)
MSE.ARFIMA3 1.068469834458 * 10 ^( - 7) 1.844987432992 * 10 ^( - 8)

从结果我们知道基于ARFIMA的模型具有与HAR-RV相似的准确度,并且两者都比GARCH模型好得多。

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
6月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
6月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
2月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
6月前
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
6月前
|
数据可视化
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码2
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
6月前
|
数据可视化 数据挖掘
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码1
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
6月前
|
前端开发 数据可视化
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化
|
6月前
|
算法 搜索推荐
R语言混合SVD模型IBCF协同过滤推荐算法研究——以母婴购物平台为例
R语言混合SVD模型IBCF协同过滤推荐算法研究——以母婴购物平台为例
|
6月前
|
机器学习/深度学习 数据可视化
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码

热门文章

最新文章