R语言时间序列GARCH模型分析股市波动率

简介: R语言时间序列GARCH模型分析股市波动率

在这篇文章中,我们将学习一种在价格序列中建立波动性模型的标准方法,即广义自回归条件异方差(GARCH)模型。

价格波动的 GARCH 模型的思想是利用误差结构的近期实现来预测误差结构的未来实现。更简单地说,我们经常看到在高波动性或低波动性时期的聚类,因此我们可以利用近期的波动性来预测近期未来的波动性。

我们将使用SPY价格来说明波动率的模型。下面的图显示了SPY收益率。

colnames(SPYRet) <- c('SPY')
SPYRet           <- tidy(SPYRet)
ggplot(SPYRet) + 
  geom_line() + 
  labs(title = "SPY收益率"

这篇文章的首要目标是对价格收益序列的变化的平均值和方差进行建模。

接下来,我们将通过两种常用的方式来显示收益率的变化方差。这些是绘制价格收益的绝对值。

或价格收益的平方

这两种情况都是有意义的,因为方差总是一个正数,并且受到偏离平均值的影响。当然这是在我们知道收益序列的平均值为0的情况下。

在价格数据中,百分比回报率的平均值几乎都非常接近于0。如果平均回报率非零,那么我们可以直接绘制

add_column( value^2,  abs(value))
ggplot(SPYRet) + 
  geom_line() + 
  labs(title = "SPY绝对收益值"

ggplot(Ret, aes(y = SquaredReturns) + 
  geom_line() + 
  labs(title = "SPY平方收益率"

波动率的GARCH模型

普通的(GARCH模型有很多变体)GARCH模型如下。

第一行是为均值建模的方程。这里没有ARMA效应,但如果你发现它们很重要,可以很容易地把它们放进去。只有一个截距和一个误差项。接下来的三行将更多的结构放在误差项上,

第二行为什么我们要把两个项相乘来得到ϵt?

要看到这一点,重要的是要牢记这里的目标。我们正在寻找一个能给我们带来rSPYt变化方差的模型

因此,如果基本收益模型是

接下来的步骤依赖于随机变量方差的属性。具体来说,如果

因此,如果我们得到一个εt的模型

考虑GARCH模型中的第二行。

请注意 σtσ2ϵ2

最后一行是由于

估计GARCH模型

下面的代码使用rugarch R包来估计GARCH(p = 1, q = 1)模型。请注意,p和q表示σ2tϵ2t的滞后数。

第一条命令要求它用model = "sGARCH "指定一个普通的GARCH。它要求它使用ARMA(1, 1)作为收益模型,即armaOrder = c(1, 1), include.mean = TRUE。我们要求它使用N(0,1),distribution.model="norm",模型输出显示在 "最优参数 "下。mu、ar1和ma1系数来自均值模型(ARMA(1,1)),omega、alpha1和beta1是来自

garchspec(variance.m = list(model = "sGARCH", mean.m= list(armaOrder = c(1, 1)
                            dist = "norm")
garchfit

现在让我们用这个估计的模型来产生滚动预测,即

forecast(spec, n.ahead = 1, n.roll = 2499, out = 2500)
plot(forecast)

可以看到,这个模型很好的预测了波动率峰值将保持多长时间,或者说是模拟了波动率峰值回落到长期平均水平的路径。由于所有的计量经济学模型都是用过去的数值来预测当前的数值,所以它无法预见波动率最初上升的情况。


相关文章
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
3月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
4月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
55 3
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
下一篇
DataWorks