Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择

简介: Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择

本文建立偏最小二乘法(PLS)回归(PLSR)模型,以及预测性能评估。为了建立一个可靠的模型,我们还实现了一些常用的离群点检测和变量选择方法,可以去除潜在的离群点和只使用所选变量的子集来 "清洗 "你的数据。

步骤

  • 建立PLS回归模型
  • PLS的K-折交叉验证
  • PLS的蒙特卡洛交叉验证(MCCV)。
  • PLS的双重交叉验证(DCV)
  • 使用蒙特卡洛抽样方法进行离群点检测
  • 使用CARS方法进行变量选择。
  • 使用移动窗口PLS(MWPLS)进行变量选择。
  • 使用蒙特卡洛无信息变量消除法(MCUVE)进行变量选择
  • 进行变量选择

建立PLS回归模型

这个例子说明了如何使用基准近红外数据建立PLS模型。

plot(X');               % 显示光谱数据。
xlabel('波长指数');
ylabel('强度');

参数设定

A=6;                    % 潜在变量(LV)的数量。
method='center';        % 用于建立PLS模型的X的内部预处理方法
PLS(X,y,A,method);  % 建立模型的命令

pls.m函数返回一个包含成分列表的对象PLS。结果解释。

regcoef_original:连接X和y的回归系数。

X_scores:X的得分。

VIP:预测中的变量重要性,评估变量重要性的一个标准。

变量的重要性。

RMSEF:拟合的均方根误差。

y_fit:y的拟合值。

R2:Y的解释变异的百分比。

PLS的K折交叉验证

说明如何对PLS模型进行K折交叉验证

clear;
A=6;                          % LV的数量
K=5;                          % 交叉验证的次数

plot(CV.RMSECV)               % 绘制每个潜在变量(LVs)数量下的RMSECV值
xlabel('潜在变量(LVs)数量')          % 添加x标签
ylabel('RMSECV')              % 添加y标签

返回的值CV是带有成分列表的结构数据。结果解释。

RMSECV:交叉验证的均方根误差。越小越好

Q2:与R2含义相同,但由交叉验证计算得出。

optLV:达到最小RMSECV(最高Q2)的LV数量。

蒙特卡洛交叉验证(MCCV)的PLS

说明如何对PLS建模进行MCCV。与K-fold CV一样,MCCV是另一种交叉验证的方法。

% 参数设置
A=6;
method='center';
N=500;                          % Monte Carlo抽样的数量
% 运行mccv.
plot(MCCV.RMSECV);              % 绘制每个潜在变量(LVs)数量下的RMSECV值
xlabel('潜在变量(LVs)数量');

MCCV

MCCV是一个结构性数据。结果解释。

Ypred:预测值

Ytrue:真实值

RMSECV:交叉验证的均方根误差,越小越好。

Q2:与R2含义相同,但由交叉验证计算得出。

PLS的双重交叉验证(DCV)

说明如何对PLS建模进行DCV。与K-fold CV一样,DCV是交叉验证的一种方式。

% 参数设置
N=50;                                 % Monte Carlo抽样的数量
dcv(X,y,A,k,method,N);
DCV

使用蒙特卡洛抽样方法的离群点检测

说明离群点检测方法的使用情况

A=6;
method='center';
F=mc(X,y,A,method,N,ratio);

结果解释。

predError:每个抽样中的样本预测误差

MEAN:每个样本的平均预测误差

STD:每个样本的预测误差的标准偏差

plot(F) % 诊断图

注:MEAN值高或SD值高的样本更可能是离群值,应考虑在建模前将其剔除。

使用CARS方法进行变量选择。

A=6;
fold=5;
car(X,y,A,fold);

结果解释。

optLV:最佳模型的LV数量

vsel:选定的变量(X中的列)。

plotcars(CARS); % 诊断图

注:在这幅图中,顶部和中间的面板显示了选择变量的数量和RMSECV如何随着迭代而变化。底部面板描述了每个变量的回归系数(每条线对应一个变量)如何随着迭代而变化。星形垂直线表示具有最低RMSECV的最佳模型。

使用移动窗口PLS(MWPLS)进行变量选择

load corn_m51;                      % 示例数据
width=15;                           % 窗口大小
mw(X,y,width);
plot(WP,RMSEF);
xlabel('窗口位置');

注:从该图中建议将RMSEF值较低的区域纳入PLS模型中。

使用蒙特卡洛无信息变量消除法(MCUVE)进行变量选择

N=500;
method='center';
UVE

plot(abs(UVE.RI))

结果解释。RI:UVE的可靠性指数,是对变量重要性的测量,越高越好。

进行变量选择

A=6;
N=10000;
method='center';
FROG=rd_pls(X,y,A,method,N);
              N: 10000
              Q: 2
          model: \[10000x700 double\]
        minutes: 0.6683
         method: 'center'
          Vrank: \[1x700 double\]
         Vtop10: \[505 405 506 400 408 233 235 249 248 515\]
    probability: \[1x700 double\]
           nVar: \[1x10000 double\]
          RMSEP: \[1x10000 double\]

xlabel('变量序号');
ylabel('选择概率');

结果解释:

模型结果是一个矩阵,储存了每一个相互关系中的选择变量。

概率:每个变量被包含在最终模型中的概率。越大越好。这是一个衡量变量重要性的有用指标。


目录
打赏
0
2
2
0
111
分享
相关文章
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真
本程序基于GARCH-Copula-CVaR模型,使用MATLAB2022A仿真金融系统性风险溢出效应。核心功能包括计算违约点、资产价值波动率、信用溢价及其直方图等指标。GARCH模型用于描述资产收益波动性,Copula捕捉依赖结构,CVaR度量极端风险。完整代码无水印输出。 具体步骤:首先通过GARCH模型估计单个资产的波动性,再利用Copula方法构建多资产联合分布,最后应用CVaR评估系统性风险。程序展示了详细的运行结果和图表分析,适用于金融市场风险量化研究。
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
22天前
|
基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面
本程序基于小波变换和峰值搜索技术,实现光谱检测的MATLAB仿真,带有GUI界面。它能够对CO2、SO2、CO和CH4四种成分的比例进行分析和提取。程序在MATLAB 2022A版本下运行,通过小波分解、特征提取和峰值检测等步骤,有效识别光谱中的关键特征点。核心代码展示了光谱数据的处理流程,包括绘制原始光谱、导数光谱及标注峰值位置,并保存结果。该方法结合了小波变换的时频分析能力和峰值检测的敏锐性,适用于复杂信号的非平稳特性分析。
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
分别通过LS和RML进行模型参数辨识matlab仿真
本程序通过最小二乘法(LS)和递归最大似然估计(RML)进行模型参数辨识,并在MATLAB2022A中仿真。仿真输出包括参数辨识误差及收敛值。程序展示了两种方法的参数估计值及其误差收敛情况,适用于控制系统设计与分析。最小二乘法适合离线批量处理,而RML则适用于实时在线处理。核心代码实现了LS辨识,并绘制了参数估计值和误差变化图。
MATLAB中的基本数据类型与变量操作
【10月更文挑战第1天】 MATLAB 是一种广泛应用于数学计算和科学研究的编程语言,其核心是矩阵运算。本文详细介绍了 MATLAB 中的基本数据类型,包括数值类型(如 `double` 和 `int`)、字符数组、逻辑类型、结构体、单元数组和函数句柄,并通过代码示例展示了变量操作方法。
298 0
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
262 13

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等