Python中的装饰器:提升代码可读性与灵活性

简介: Python中的装饰器是一种强大的工具,可以在不改变函数原有逻辑的情况下,为函数添加额外的功能。本文将介绍装饰器的基本概念和用法,并通过实例演示如何利用装饰器提升代码的可读性和灵活性,使代码更加简洁、易于维护。

在Python中,装饰器是一种特殊的函数,它可以接受一个函数作为参数,并返回一个新的函数,通常用于在不修改原函数代码的情况下,为函数添加额外的功能或行为。装饰器在Python中被广泛应用于各种场景,如日志记录、性能分析、权限控制等。
首先,让我们来看一个简单的装饰器示例:
python
Copy Code
def my_decorator(func):
def wrapper():
print("Something is happening before the function is called.")
func()
print("Something is happening after the function is called.")
return wrapper

@my_decorator
def say_hello():
print("Hello!")

say_hello()
在上面的例子中,my_decorator 是一个装饰器函数,它接受一个函数 func 作为参数,并返回一个新的函数 wrapper。在 wrapper 函数内部,我们可以在调用原函数之前或之后添加额外的逻辑。通过在 say_hello 函数上方添加 @my_decorator,我们实际上是在告诉 Python 在调用 say_hello 函数之前先将其传递给 my_decorator 函数进行装饰。
除了简单的装饰器外,我们还可以编写带有参数的装饰器。例如,如果我们希望装饰器能够接受参数,可以编写一个接受参数的装饰器工厂函数,返回一个装饰器函数。以下是一个示例:
python
Copy Code
def repeat(num_times):
def decoratorrepeat(func):
def wrapper(args, *kwargs):
for
in range(num_times):
result = func(args, *kwargs)
return result
return wrapper
return decorator_repeat

@repeat(num_times=3)
def greet(name):
print(f"Hello {name}")

greet("World")
在上面的例子中,repeat 是一个装饰器工厂函数,它接受一个参数 num_times,并返回一个装饰器函数 decorator_repeat。decorator_repeat 函数接受一个函数 func 作为参数,并返回一个新的函数 wrapper。在 wrapper 函数内部,我们可以根据 num_times 参数来控制函数 func 的执行次数。通过在 greet 函数上方添加 @repeat(num_times=3),我们实际上是在告诉 Python 在调用 greet 函数之前先将其传递给 repeat 函数进行装饰,并指定 num_times 参数为 3。
通过使用装饰器,我们可以将与函数相关的功能模块化,并将其重用于多个函数中,从而提高代码的可读性和灵活性。然而,需要注意的是,装饰器可能会影响函数的原始签名和文档字符串,因此在编写装饰器时应谨慎考虑这些因素。

相关文章
|
15天前
|
机器学习/深度学习 人工智能 PyTorch
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
200行python代码实现从Bigram模型到LLM
|
15天前
|
机器学习/深度学习 算法 PyTorch
从零开始200行python代码实现LLM
本文从零开始用Python实现了一个极简但完整的大语言模型,帮助读者理解LLM的工作原理。首先通过传统方法构建了一个诗词生成器,利用字符间的概率关系递归生成文本。接着引入PyTorch框架,逐步重构代码,实现了一个真正的Bigram模型。文中详细解释了词汇表(tokenizer)、张量(Tensor)、反向传播、梯度下降等关键概念,并展示了如何用Embedding层和线性层搭建模型。最终实现了babyGPT_v1.py,一个能生成类似诗词的简单语言模型。下一篇文章将在此基础上实现自注意力机制和完整的GPT模型。
从零开始200行python代码实现LLM
|
25天前
|
人工智能 API Python
掌握 Python 文件处理、并行处理和装饰器
本文介绍了 Python 在文件处理、并行处理以及高级功能(如装饰器、Lambda 函数和推导式)的应用。第一部分讲解了文件的基本操作、读写方法及处理大型文件的技巧,并演示了使用 Pandas 处理结构化数据的方式。第二部分探讨了多线程与多进程的并行处理,以及 `concurrent.futures` 模块的简化用法,适合不同类型的任务需求。第三部分则深入装饰器的实现与应用,包括简单装饰器、带参数的装饰器及 `functools.wraps` 的使用,同时简要介绍了 Lambda 函数和推导式的语法与场景。内容实用且全面,帮助读者掌握 Python 高效编程的核心技能。
|
24天前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
58 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
26天前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
234 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
3月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
1月前
|
数据采集 安全 BI
用Python编程基础提升工作效率
一、文件处理整明白了,少加两小时班 (敲暖气管子)领导让整理100个Excel表?手都干抽筋儿了?Python就跟铲雪车似的,哗哗给你整利索!
74 11
|
3月前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
127 28
|
3月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
3月前
|
Python
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
58 4

推荐镜像

更多