R语言时变面板平滑转换回归模型TV-PSTR分析债务水平对投资的影响

简介: R语言时变面板平滑转换回归模型TV-PSTR分析债务水平对投资的影响

当采用两种状态时,单转换函数PSTR模型具有两个变量:

我们的经验方法的基础包括评估N个国家的资本流动性。相应的模型定义如下:

其中,Iit是第i个国家在时间t时观察到的国内投资与GDP的比率,Sit是国内储蓄与GDP的比率,αi表示单个固定效应。残差εit假定为i.i.d.(0,σ2ε)。Corbin(2001)特别使用了该模型,该模型有两个主要缺点。

首先,它假设在小组的N个国家之间资本的国际流动程度相同,即βi=β,∀i=1,…,N。很明显,即使仅考虑经合组织国家,这种假设也是不现实的。如前所述,已经确定了许多明显影响资本流动的因素:国家规模、人口年龄结构、开放程度等。因此,假设βi=β意味着这些因素不影响资本流动。这样的假设显然过于严格。

其次,方程(1)表明,在模型的估计期内,储蓄保留系数是常数。这一假设也是不现实的,特别是当我们考虑具有足够长时间维度的宏观面板时:很明显,典型经合组织国家的资本流动性在60年代和90年代并不相同。

自70年代中期以来,主要经合组织国家的资本管制和资本跨境流动障碍已经消除,FH系数随着时间的推移呈下降趋势。实际上,Obstfeld和Rogoff(2000)在1990-1997年期间的回归中发现,经合组织国家的储蓄保留系数为0.60,而FH在1960-74年期间16个经合组织国家的文章中强调的储蓄保留系数为0.89。因此,没有理由假设参数β(参数βi)是时间不变的。

一般来说,这两个问题不能同时解决。例如,可以通过假设FH参数βi是随机分布的来考虑异质面板模型5。然而,在这样一个随机系数模型中,资本的流动性被假定为时间不变的。此外,在一个简单的随机系数模型(Swamy,1970)中,参数βi被假定为独立于解释变量。换言之,假设FH系数与国内储蓄与GDP之比无关。因此,它们的可变性是其他未指明的结构因素的结果。

解决这两个问题的方法是在线性面板模型中引入阈值效应。在这种情况下,第一种解决方案是使用简单面板阈值回归(PTR)模型(Hansen,1999),正如Ho(2003)所建议的那样。在这种情况下,极端状态之间的转换机制非常简单:在每个日期,如果观察到的某个国家的阈值变量小于某个给定值,称为阈值参数,资本流动性是由一个特定的模型(或机制)来定义的,它不同于阈值变量大于阈值参数时使用的模型。例如,让我们考虑一个具有两个极端状态的PTR模型:解决这两个问题的方法是在线性面板模型中引入阈值效应。


具有单个位置参数(m = 1)的逻辑转换函数:


可以证明,I w.r.t S的弹性是时变的


我认为提取这些随时间变化的系数对所有个体来说都是很直观的,因为它们显示了感兴趣的关系的动态,补充了转换函数的可视化。

假设我们将此应用于Hansen数据的情况(4个变量而不是2个变量,但上面的公式适用)。我们想研究债务水平对投资的影响,条件是选择转换变量为托宾Q。让我们首先拟合模型:

PSTR(data, dep='inva', indep=4:20, indep_k=c('vala','debta','cfa','sales'),tvars=c('vala'), iT=14)


然后计算时变系数,并提取样本中前三家公司的托宾Q水平

for (i in 1:n){ 
va_i<-vala[cusip==id[i]] 
g<-(1+exp(-gamma*(va_i-c)))^(-1) 
tvc_i<-est[2] + mbeta*g


最后绘制这些时间序列:

matplot(tvc, type = 'l', lwd=2,col = 1:3, xaxt='n'
axis(1, at=1:nrow(tvc), labels=c(1974:1987)); legend("topleft", legend = 
matplot(vala, type = 'l', lwd=2,col = 1:3, xaxt = 'n', xlab='年'
; axis(1, at=1:nrow(tvc), labels=c(1974:1987));
legend("topleft", legend = paste('公司',colnames(vala),sep=''),


我们可以看到,投资w.r.t债务的弹性随着时间的推移而变化,并且取决于Q的水平:Q越高(拥有更多投资机会的公司),影响越强。特别是Q(2824)最高的公司(绿色曲线,右图)表现出最稳定的关系(绿色曲线,左图)。

有一个问题:如果转换变量与独立变量相同(或它的函数),则弹性的计算变得更加复杂。通常,对于具有R转换函数的模型(R + 1机制),我们有:
这意味着投资弹性w.r.t托宾的Q需要用不同的方法来计算。


相关文章
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
58 3
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
4月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
4月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
89 3
|
7月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)