R语言Fama-French三因子模型实际应用:优化投资组合

简介: R语言Fama-French三因子模型实际应用:优化投资组合

本文将说明金融数学中的R 语言优化投资组合,Fama-French三因子(因素)模型的实现和使用。

具有单一市场因素的宏观经济因素模型

我们将从一个包含单个已知因子(即市场指数)的简单示例开始。该模型为

其中显式因子ft为S&P 500指数。我们将做一个简单的最小二乘(LS)回归来估计截距α和加载β:

大多数代码行用于准备数据,而不是执行因子建模。让我们开始准备数据:

# 设置开始结束日期和股票名称列表
begin_date <- "2016-01-01"
end_date <- "2017-12-31"
# 从YahooFinance下载数据
data_set <- xts()
for (stock_index in 1:length(stock_namelist))
  data_set <- cbind(data_set, Ad(getSymbols(stock_namelist[stock_index], 
                                            from = begin_date, to = end_date, 
head(data_set)
#>                AAPL  AMD      ADI     ABBV AEZS        A       APD       AA       CF
#> 2016-01-04 98.74225 2.77 49.99239 49.46063 4.40 39.35598 107.89010 23.00764 35.13227
#> 2016-01-05 96.26781 2.75 49.62508 49.25457 4.21 39.22057 105.96097 21.96506 34.03059
#> 2016-01-06 94.38389 2.51 47.51298 49.26315 3.64 39.39467 103.38042 20.40121 31.08988
#> 2016-01-07 90.40047 2.28 46.30082 49.11721 3.29 37.72138  99.91463 19.59558 29.61520
#> 2016-01-08 90.87848 2.14 45.89677 47.77789 3.29 37.32482  99.39687 19.12169 29.33761
#> 2016-01-11 92.35001 2.34 46.98954 46.25827 3.13 36.69613  99.78938 18.95583 28.14919
head(SP500_index)
#>              index
#> 2016-01-04 2012.66
#> 2016-01-05 2016.71
#> 2016-01-06 1990.26
#> 2016-01-07 1943.09
#> 2016-01-08 1922.03
#> 2016-01-11 1923.67
plot(SP500_index)


# 计算股票和SP500指数的对数收益率作为显式因子
X <- diff(log(data_set), na.pad = FALSE)
N <- ncol(X)  # 股票数量
T <- nrow(X)  # 天数


现在我们准备进行因子模型拟合。LS拟合很容易在R中实现,如下所示:

beta <- cov(X,f)/as.numeric(var(f))
alpha <- colMeans(X) - beta*colMeans(f)
sigma2 <- rep(NA, N)
print(alpha)
#>              index
#> AAPL  0.0003999086
#> AMD   0.0013825599
#> ADI   0.0003609968
#> ABBV  0.0006684632
#> AEZS -0.0022091301
#> A     0.0002810616
#> APD   0.0001786375
#> AA    0.0006429140
#> CF   -0.0006029705
print(beta)
#>          index
#> AAPL 1.0957919
#> AMD  2.1738304
#> ADI  1.2683047
#> ABBV 0.9022748
#> AEZS 1.7115761
#> A    1.3277212
#> APD  1.0239453
#> AA   1.8593524
#> CF   1.5702493


或者,我们可以使用矩阵表示法进行拟合 ,我们定义 和扩展因子 。然后最小化

t(X) %*% F_ %*% solve(t(F_) %*% F_)  
#>              alpha      beta
#> AAPL  0.0003999086 1.0957919
#> AMD   0.0013825599 2.1738304
#> ADI   0.0003609968 1.2683047
#> ABBV  0.0006684632 0.9022748
#> AEZS -0.0022091301 1.7115761
#> A     0.0002810616 1.3277212
#> APD   0.0001786375 1.0239453
#> AA    0.0006429140 1.8593524
#> CF   -0.0006029705 1.5702493
E <- xts(t(t(X) - Gamma %*% t(F_)), index(X))  # 残差


另外,我们可以简单地使用R为我们完成工作:

cbind(alpha = factor_model$alpha, beta = factor_model$beta)
#>              alpha     index
#> AAPL  0.0003999086 1.0957919
#> AMD   0.0013825599 2.1738304
#> ADI   0.0003609968 1.2683047
#> ABBV  0.0006684632 0.9022748
#> AEZS -0.0022091301 1.7115761
#> A     0.0002810616 1.3277212
#> APD   0.0001786375 1.0239453
#> AA    0.0006429140 1.8593524
#> CF   -0.0006029705 1.5702493


可视化协方差矩阵

有趣的是,可视化对数收益率[算术处理误差] 以及残差Ψ的估计协方差矩阵。让我们从对数收益率的协方差矩阵开始:

main = "单因子模型对数收益的协方差矩阵")


我们可以观察到所有股票都是高度相关的,这是市场因素的影响。为了检查股票相关关系,我们绘制相关图:

plot(cov2cor(Psi),
         main = "残差协方差矩阵")


cbind(stock_namelist, sector_namelist)  # 股票的行业
#>       stock_namelist sector_namelist         
#>  [1,] "AAPL"         "Information Technology"
#>  [2,] "AMD"          "Information Technology"
#>  [3,] "ADI"          "Information Technology"
#>  [4,] "ABBV"         "Health Care"           
#>  [5,] "AEZS"         "Health Care"           
#>  [6,] "A"            "Health Care"           
#>  [7,] "APD"          "Materials"             
#>  [8,] "AA"           "Materials"             
#>  [9,] "CF"           "Materials"


有趣的是,我们可以观察到对Ψ执行的自动聚类可以正确识别股票的行业。

评估投资资金

在此示例中,我们将基于因子模型评估几种投资基金的绩效。我们将标准普尔500指数作为明确的市场因素,并假设无风险收益为零 rf = 0。特别是,我们考虑六种交易所买卖基金(ETF):

我们首先加载数据:

# 设置开始结束日期和股票名称列表
begin_date <- "2016-10-01"
end_date <- "2017-06-30"
# 从YahooFinance下载数据
data_set <- xts()
for (stock_index in 1:length(stock_namelist))
  data_set <- cbind(data_set, Ad(getSymbols(stock_namelist[stock_index], 
head(data_set)
#>                 SPY   XIVH     SPHB     SPLV     USMV      JKD
#> 2016-10-03 203.6610 29.400 31.38322 38.55683 42.88382 119.8765
#> 2016-10-04 202.6228 30.160 31.29729 38.10687 42.46553 119.4081
#> 2016-10-05 203.5195 30.160 31.89880 38.02249 42.37048 119.9421
#> 2016-10-06 203.6610 30.160 31.83196 38.08813 42.39899 120.0826
#> 2016-10-07 202.9626 30.670 31.58372 37.98500 42.35146 119.8296
#> 2016-10-10 204.0197 31.394 31.87970 38.18187 42.56060 120.5978
head(SP500_index)
#>              index
#> 2016-10-03 2161.20
#> 2016-10-04 2150.49
#> 2016-10-05 2159.73
#> 2016-10-06 2160.77
#> 2016-10-07 2153.74
#> 2016-10-10 2163.66
# 计算股票和SP500指数的对数收益率作为显式因子
X <- diff(log(data_set), na.pad = FALSE)
N <- ncol(X)  # 股票数量
T <- nrow(X)  # 天数


现在我们可以计算所有ETF的alpha和beta:

#>              alpha      beta
#> SPY   7.142225e-05 1.0071424
#> XIVH  1.810392e-03 2.4971086
#> SPHB -2.422107e-04 1.5613533
#> SPLV  1.070918e-04 0.6777149
#> USMV  1.166177e-04 0.6511667
#> JKD   2.569578e-04 0.8883843


现在可以进行一些观察:

  • SPY是S&P 500的ETF,如预期的那样,其alpha值几乎为零,beta值几乎为1:α= 7.142211×10-5和 β= 1.0071423。
  • XIVH是具有高alpha值的ETF,计算出的alpha值是ETF中最高的(高1-2个数量级):α= 1.810392×10-3。
  • SPHB是一种ETF,据推测具有很高的beta,而计算出的beta却是最高的,但不是最高的:β= 1.5613531。有趣的是,计算出的alpha为负,因此,该ETF应谨慎。
  • SPLV是降低波动性的ETF,实际上,计算得出的beta偏低:β= 0.6777072。
  • USMV还是降低波动性的ETF,实际上,计算出的beta是最低的:β= 0.6511671。
  • JKD显示出很好的折衷。

我们可以使用一些可视化:

barplot(rev(alpha), horiz = TRUE, main = "alph


我们还可以使用例如Sharpe比率,以更系统的比较不同的ETF。回顾一种资产和一个因素的因子模型

我们获得

夏普比率如下:

假设。因此,基于Sharpe比率对不同资产进行排名的一种方法是根据α/β比率对它们进行排名:

print(ranking)
#>         alpha/beta         SR         alpha      beta
#> XIVH  7.249952e-04 0.13919483  1.810392e-03 2.4971086
#> JKD   2.892417e-04 0.17682677  2.569578e-04 0.8883843
#> USMV  1.790904e-04 0.12280053  1.166177e-04 0.6511667
#> SPLV  1.580189e-04 0.10887903  1.070918e-04 0.6777149
#> SPY   7.091574e-05 0.14170591  7.142225e-05 1.0071424
#> SPHB -1.551287e-04 0.07401566 -2.422107e-04 1.5613533


可以看到:

  • 就α/β而言,XIVH最佳(α最大),而SPHB最差(α负)。
  • 就夏普比率(更确切地说,是信息比率,因为我们忽略了无风险利率)而言,JDK是最好的,其次是SPY。这证实了大多数投资基金的表现不超过市场的观点。
  • 显然,无论以哪种衡量标准,SPHB都是最差的:负α,负β比率和Sharpe比率。
  • JDK之所以能够取得最佳性能,是因为它的alpha值很好(尽管不是最好的),而同时具有0.88的中等beta值。
  • XIVH和SPHB有大量不同的beta,因此在市场上具有极端敞口。
  • USMV在市场上的曝光率最小,有可接受的alpha值,并且其Sharpe比率接近第二和第三高的位置。

Fama-French三因子模型

该示例将说明使用标准普尔500指数中的九种股票的Fama-French三因子模型。让我们从加载数据开始:

# 设置开始结束日期和股票名称列表
begin_date <- "2013-01-01"
end_date <- "2017-08-31"
# 从YahooFinance下载数据
data_set <- xts()
for (stock_index in 1:length(stock_namelist))
  data_set <- cbind(data_set, Ad(getSymbols(stock_namelist[stock_index], 
# 下载Fama-French因子
head(fama_lib)
#>            Mkt.RF   SMB   HML
#> 1926-07-01   0.10 -0.24 -0.28
#> 1926-07-02   0.45 -0.32 -0.08
#> 1926-07-06   0.17  0.27 -0.35
#> 1926-07-07   0.09 -0.59  0.03
#> 1926-07-08   0.21 -0.36  0.15
#> 1926-07-09  -0.71  0.44  0.56
tail(fama_lib)
#>            Mkt.RF   SMB   HML
#> 2017-11-22  -0.05  0.10 -0.04
#> 2017-11-24   0.21  0.02 -0.44
#> 2017-11-27  -0.06 -0.36  0.03
#> 2017-11-28   1.06  0.38  0.84
#> 2017-11-29   0.02  0.04  1.45
#> 2017-11-30   0.82 -0.56 -0.50
# 计算股票的对数收益率和Fama-French因子
X <- diff(log(data_set), na.pad = FALSE)
N <- ncol(X)  #股票数量


现在我们在矩阵F中具有三个因子,并希望拟合模型,其中现在的载荷是一个beta矩阵:。我们可以做最小二乘拟合,最小化。更方便地,我们定义和扩展因子 。然后可以将LS公式写为最小化

print(Gamma)
#>              alpha        b1          b2          b3
#> AAPL  1.437845e-04 0.9657612 -0.23339130 -0.49806858
#> AMD   6.181760e-04 1.4062105  0.80738336 -0.07240117
#> ADI  -2.285017e-05 1.2124008  0.09025928 -0.20739271
#> ABBV  1.621380e-04 1.0582340  0.02833584 -0.72152627
#> AEZS -4.513235e-03 0.6989534  1.31318108 -0.25160182
#> A     1.146100e-05 1.2181429  0.10370898 -0.20487290
#> APD   6.281504e-05 1.0222936 -0.04394061  0.11060938
#> AA   -4.587722e-05 1.3391852  0.62590136  0.99858692
#> CF   -5.777426e-04 1.0387867  0.48430007  0.82014523


另外,我们可以使用R完成:

#>              alpha    Mkt.RF         SMB         HML
#> AAPL  1.437845e-04 0.9657612 -0.23339130 -0.49806858
#> AMD   6.181760e-04 1.4062105  0.80738336 -0.07240117
#> ADI  -2.285017e-05 1.2124008  0.09025928 -0.20739271
#> ABBV  1.621380e-04 1.0582340  0.02833584 -0.72152627
#> AEZS -4.513235e-03 0.6989534  1.31318108 -0.25160182
#> A     1.146100e-05 1.2181429  0.10370898 -0.20487290
#> APD   6.281504e-05 1.0222936 -0.04394061  0.11060938
#> AA   -4.587722e-05 1.3391852  0.62590136  0.99858692
#> CF   -5.777426e-04 1.0387867  0.48430007  0.82014523


统计因子模型

现在让我们考虑统计因子模型或隐式因子模型,其中因子和载荷均不可用。调用具有 K因子的模型 XT =α1T+ BFT + ET的主成分方法:

  1. PCA:
  • 样本均值:
  • 矩阵:
  • 样本协方差矩阵:
  • 特征分解:
  1. 估计:



  1. 更新特征分解:
  2. 重复步骤2-3,直到收敛为止。
#>              alpha                                        
#> AAPL  0.0007074564 0.0002732114 -0.004631647 -0.0044814226
#> AMD   0.0013722468 0.0045782146 -0.035202146  0.0114549515
#> ADI   0.0006533116 0.0004151904 -0.007379066 -0.0053058139
#> ABBV  0.0007787929 0.0017513359 -0.003967816 -0.0056000810
#> AEZS -0.0041576357 0.0769496344  0.002935950  0.0006249473
#> A     0.0006902482 0.0012690079 -0.005680162 -0.0061507654
#> APD   0.0006236565 0.0005442926 -0.004229364 -0.0057976394
#> AA    0.0006277163 0.0027405024 -0.009796620 -0.0149177957
#> CF   -0.0000573028 0.0023108605 -0.007409061 -0.0153425661


同样,我们可以使用R完成工作:

#>              alpha      factor1      factor2       factor3
#> AAPL  0.0007074564 0.0002732114 -0.004631647 -0.0044814226
#> AMD   0.0013722468 0.0045782146 -0.035202146  0.0114549515
#> ADI   0.0006533116 0.0004151904 -0.007379066 -0.0053058139
#> ABBV  0.0007787929 0.0017513359 -0.003967816 -0.0056000810
#> AEZS -0.0041576357 0.0769496344  0.002935950  0.0006249473
#> A     0.0006902482 0.0012690079 -0.005680162 -0.0061507654
#> APD   0.0006236565 0.0005442926 -0.004229364 -0.0057976394
#> AA    0.0006277163 0.0027405024 -0.009796620 -0.0149177957
#> CF   -0.0000573028 0.0023108605 -0.007409061 -0.0153425661


通过不同因子模型进行协方差矩阵估计的最终比较

我们最终将比较以下不同的因子模型:

  • 样本协方差矩阵
  • 宏观经济一因素模型
  • 基本的三因素Fama-French模型
  • 统计因素模型

我们在训练阶段估计模型,然后将估计的协方差矩阵与测试阶段的样本协方差矩阵进行比较。估计误差将根据PRIAL(平均损失提高百分比)进行评估:

加载训练和测试集:

# 设置开始结束日期和股票名称列表
begin_date <- "2013-01-01"
end_date <- "2015-12-31"
# 准备股票数据
data_set <- xts()
for (stock_index in 1:length(stock_namelist))
  data_set <- cbind(data_set, Ad(getSymbols(stock_namelist[stock_index], 
#   Fama-French 因子
mydata <- mydata[-nrow(mydata), 
# 准备指数
f_SP500 <- diff(log(SP500_index), na.pad = FALSE)
# 将数据拆分为训练数据和测试数据
T_trn <- round(0.45*T)
X_trn <- X[1:T_trn, ]
X_tst <- X[(T_trn+1):T, ]


现在让我们用训练数据估算不同的因子模型:

# 样本协方差矩阵
Sigma_SCM <- cov(X_trn)
# 单因素模型
Gamma <- t(solve(t(F_) %*% F_, t(F_) %*% X_trn))
E <- xts(t(t(X_trn) - Gamma %*% t(F_)), index(X_trn))
# Fama-French三因子模型
Sigma_FamaFrench <- B %*% cov(F_FamaFrench_trn) %*% t(B) + diag(diag(Psi))
# 统计单因子模型
while (norm(Sigma - Sigma_prev, "F")/norm(Sigma, "F") > 1e-3) {
  B <- eigSigma$vectors[, 1:K, drop = FALSE] %*% diag(sqrt(eigSigma$values[1:K]), K, K)
# 统计三因子模型
K <- 3
while (norm(Sigma - Sigma_prev, "F")/norm(Sigma, "F") > 1e-3) {
  B <- eigSigma$vectors[, 1:K] %*% diag(sqrt(eigSigma$values[1:K]), K, K)
  Psi <- diag(diag(Sigma - B %*% t(B)))
Sigma_PCA3 <- Sigma
# 统计五因子模型
K <- 5
eigSigma <- eigen(Sigma)
while (norm(Sigma - Sigma_prev, "F")/norm(Sigma, "F") > 1e-3) {
  B <- eigSigma$vectors[, 1:K] %*% diag(sqrt(eigSigma$values[1:K]), K, K)
  Psi <- diag(diag(Sigma - B %*% t(B)))


最后,让我们比较测试数据中的不同估计:

Sigma_true <- cov(X_tst)
barplot(error, main = "协方差矩阵估计误差",


PRIAL <- 100*(ref - error^2)/ref
barplot(PRIAL, main = "协方差矩阵估计的先验方法",

最终可以看到使用因子模型进行协方差矩阵估计会有所帮助。


相关文章
|
2月前
|
存储 数据可视化 数据挖掘
R语言在生物信息学中的应用
【10月更文挑战第21天】生物信息学是生物学、计算机科学和信息技术相结合的交叉学科,主要研究生物大分子信息的存储、处理、分析和解释。R语言作为一种强大的统计分析工具,被广泛应用于生物信息学领域。本文将介绍R语言在生物信息学中的应用,包括基因组学、转录组学、蛋白质组学、代谢组学等方面,帮助读者了解R语言在生物信息学中的重要性和应用前景。
88 4
|
2月前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
114 3
|
2月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
61 2
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
4月前
|
机器学习/深度学习 资源调度 算法
R语言逻辑回归与分类模型的深度探索与应用
【8月更文挑战第31天】逻辑回归作为一种经典的分类算法,在R语言中通过`glm()`函数可以轻松实现。其简单、高效且易于解释的特点,使得它在处理二分类问题时具有广泛的应用价值。然而,值得注意的是,逻辑回归在处理非线性关系或复杂交互作用时可能表现不佳,此时可能需要考虑其他更复杂的分类模型。
|
4月前
|
数据挖掘
R语言方差分析(ANOVA):理解与应用
【8月更文挑战第31天】ANOVA是一种强大的统计方法,用于比较三个或更多组之间的均值差异。在R语言中,我们可以轻松地使用`aov()`函数进行ANOVA分析,并通过后置检验(如TukeyHSD检验)来进一步分析哪些组之间存在显著差异。ANOVA在多个领域都有广泛的应用,是数据分析中不可或缺的工具之一。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
4月前
|
程序员 数据处理
R语言控制结构:条件判断与循环在R中的应用
【8月更文挑战第27天】R语言中的条件判断和循环结构是编程中不可或缺的部分,它们允许程序员根据特定的条件或规则来控制程序的执行流程。通过灵活使用这些控制结构,可以编写出高效、可维护的R语言代码,以应对复杂的数据处理和分析任务。