R语言和QuantLib中Nelson-Siegel模型收益曲线建模分析

简介: R语言和QuantLib中Nelson-Siegel模型收益曲线建模分析

Nelson-Siegel- [Svensson]模型是拟合收益曲线的常用方法。它的优点是其参数的经济可解释性,被银行广泛使用。但它不一定在所有情况下都有效:模型参数有时非常不稳定,无法收敛。

纳尔逊(Nelson)和西格尔(Siegel)在其原始论文中从远期利率入手,然后推导了收益率至到期曲线的公式.

Nelson-Siegel模型是简约的,可以生成丰富的收益曲线。

但是,由于简单地使用它,它通常失去了经济上的可解释性,甚至无法收敛。


上图显示了这种情况。

plot(MATURITY_BASES, oldYields
lines(MATURITY_BASES, oldYields)
points(newMats, newYields, col="blue")
lines(newMats, newYields, col="blue")


此代码模仿了一个频繁使用的案例,当前的收益曲线与昨天的曲线进行了比较。从某种意义上讲,这是一个简单示例,因为对于给定的到期日,我们已经具有零收益率。实际上,我们通常与票息债券有关,这会使事情变得更加复杂。

您可能会认为,由于软件的实施而导致收敛失败。我要讲的不是不好的实现,而是要高度依赖所使用的数值方法,如下面的更实际的示例所示。

提供更逼真的建模

#include <ql/qldefines.hpp>
#ifdef BOOST_MSVC
#  include <ql/auto_link.hpp>
#endif
#include <ql/termstructures/yield/fittedbonddiscountcurve.hpp>
#include <ql/termstructures/yield/piecewiseyieldcurve.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/termstructures/yield/bondhelpers.hpp>
#include <ql/termstructures/yield/nonlinearfittingmethods.hpp>
 
using namespace QuantLib;
 
int main(int, char*[]) {
    try {
        Calendar calendar = NullCalendar();
        Date today = Date(18, December, 2017);
        Settings::instance().evaluationDate() = today;
 
        //市场数据
        double cleanPrices1[] = { 107.96, 135.88, 110.6,   133.46, 135.8,  142.155, 121.045, 134.97, 117.04,
            101.61, 128.67, 106.615, 106.36, 99.515, 101.21,  105.655, 114.828 };
        double cleanPrices2[] = { 107.9,  134.965, 110.37,  132.89, 135.62,140.845, 120.585, 133.995, 116.745,
            101.58, 128.115,105.985, 105.395,99.385, 100.79,104.955, 114.7985 };
        double cleanPrices3[] = { 107.96, 134.625, 110.58, 132.65, 135.145, 140.585, 120.385, 133.735, 116.635,
            101.62, 127.925, 105.6, 105.085, 99.29, 100.6, 104.945, 114.7415 };
        double cleanPrices4[] = { 107.78, 134.39, 110.175, 132.445, 134.905, 139.515, 120.115, 133.475, 116.455,
            101.58, 127.845, 105.53,104.805, 99.07, 100.46, 104.885, 114.6225 };
 
        std::vector<boost::shared_ptr<BondHelper> > bondHelpersA;
        std::vector< boost::shared_ptr<SimpleQuote> > quoteA;
        std::vector<boost::shared_ptr<BondHelper> > bondHelpersB;
        for (Size i = 0; i < numberOfBonds; i++) {
            boost::shared_ptr<SimpleQuote> cp1(new SimpleQuote(cleanPrices1<em class="d4pbbc-italic"></em>));
            quoteA.push_back(cp1);
            boost::shared_ptr<SimpleQuote> cp2(new SimpleQuote(cleanPrices2<em class="d4pbbc-italic"></em>));
            quoteB.push_back(cp2);
            boost::shared_ptr<SimpleQuote> cp3(new SimpleQuote(cleanPrices3<em class="d4pbbc-italic"></em>));
            quoteC.push_back(cp3);
            boost::shared_ptr<SimpleQuote> cp4(new SimpleQuote(cleanPrices4<em class="d4pbbc-italic"></em>));
            quoteD.push_back(cp4);
        }
 
        RelinkableHandle<Quote> quoteHandleA[numberOfBonds];
         
 
        //Nelson-Siegel模型拟合
        Real tolerance = 1.0e-14;
        Size max = 10000;
 
        boost::shared_ptr<FittedBondDiscountCurve> tsA(
            new FittedBondDiscountCurve(curveSettlementDays,
                calendar,
                instrumentsA,
                ActualActual(),
                NelsonSiegelFitting(),
                tolerance,
                max));
 
 
        boost::shared_ptr<FittedBondDiscountCurve> tsB(
            new FittedBondDiscountCurve(curveSettlementDays,
                calendar,
                instrumentsB,
                ActualActual(),
                NelsonSiegelFitting(),
                tolerance,
                max));
 
        boost::shared_ptr<FittedBondDiscountCurve> tsC(
            new FittedBondDiscountCurve(curveSettlementDays,
                calendar,
                instrumentsC,
                ActualActual(),
                NelsonSiegelFitting(),
                tolerance,
                max));
 
        boost::shared_ptr<FittedBondDiscountCurve> tsD(
            new FittedBondDiscountCurve(curveSettlementDays,
                calendar,
                instrumentsD,
                ActualActual(),
                NelsonSiegelFitting(),
                tolerance,
                max));
 
        std::cout << tsA->fitResults().numberOfIterations() << std::endl;
        std::cout << tsB->fitResults().numberOfIterations() << std::endl;


正式而言,收益曲线每天的变化并不显着,但是模型参数却可以:

Nelson-Siegel意识到了这些问题,并提供了解决这些问题的方法。特别是,他们考虑了Taus的时间序列,并确定了Taus的最佳拟合值的中值和合理范围。

但是,与往常一样,原始论文被引用的次数可能多于阅读次数。此外,如果需要按时间顺序排列的收益率数据,可能会感到困惑,而不是仅仅考虑相关日期的数据。即使处理时间序列不是问题,Nelson和Siegel也没有指定_正式的_算法来选择的最佳值。

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
29天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
43 3
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
2月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
2月前
|
机器学习/深度学习
R语言模型评估:深入理解混淆矩阵与ROC曲线
【9月更文挑战第2天】混淆矩阵和ROC曲线是评估分类模型性能的两种重要工具。混淆矩阵提供了模型在不同类别上的详细表现,而ROC曲线则通过综合考虑真正率和假正率来全面评估模型的分类能力。在R语言中,利用`caret`和`pROC`等包可以方便地实现这两种评估方法,从而帮助我们更好地理解和选择最适合当前任务的模型。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
下一篇
无影云桌面