R语言中的BP神经网络模型分析学生成绩

简介: R语言中的BP神经网络模型分析学生成绩

在本教程中,您将学习如何在R中创建神经网络模型。

神经网络(或人工神经网络)具有通过样本进行学习的能力。人工神经网络是一种受生物神经元系统启发的信息处理模型。它由大量高度互连的处理元件(称为神经元)组成,以解决问题。它遵循非线性路径,并在整个节点中并行处理信息。神经网络是一个复杂的自适应系统。自适应意味着它可以通过调整输入权重来更改其内部结构。

该神经网络旨在解决人类容易遇到的问题和机器难以解决的问题,例如识别猫和狗的图片,识别编号的图片。这些问题通常称为模式识别。它的应用范围从光学字符识别到目标检测。

本教程将涵盖以下主题:

  • 神经网络概论
  • 正向传播和反向传播
  • 激活函数
  • R中神经网络的实现
  • 案例
  • 利弊
  • 结论

神经网络概论

神经网络是受人脑启发执行特定任务的算法。是一组连接的输入/输出单元,其中每个连接都具有与之关联的权重。在学习阶段,网络通过调整权重进行学习,来预测给定输入的正确类别标签。

人脑由数十亿个处理信息的神经细胞组成。每个神经细胞都认为是一个简单的处理系统。被称为生物神经网络的神经元通过电信号传输信息。这种并行的交互系统使大脑能够思考和处理信息。一个神经元的树突接收来自另一个神经元的输入信号,并根据这些输入将输出响应到某个其他神经元的轴突。

树突接收来自其他神经元的信号。单元体将所有输入信号求和以生成输出。当总和达到阈值时通过轴突输出。突触是神经元相互作用的一个点。它将电化学信号传输到另一个神经元。

 

x1,x2 .... xn是输入变量。w1,w2 .... wn是各个输入的权重。b是偏差,将其与加权输入相加即可形成输入。偏差和权重都是神经元的可调整参数。使用一些学习规则来调整参数。神经元的输出范围可以从-inf到+ inf。神经元不知道边界。因此,我们需要神经元的输入和输出之间的映射机制。将输入映射到输出的这种机制称为激活函数

前馈和反馈人工神经网络

人工神经网络主要有两种类型:前馈和反馈人工神经网络。前馈神经网络是非递归网络。该层中的神经元仅与下一层中的神经元相连,并且它们不形成循环。在前馈中,信号仅在一个方向上流向输出层。

反馈神经网络包含循环。通过在网络中引入环路,信号可以双向传播。反馈周期会导致网络行为根据其输入随时间变化。反馈神经网络也称为递归神经网络。

 

 

激活函数

激活函数定义神经元的输出。激活函数使神经网络具有非线性和可表达性。有许多激活函数

  • 识别函数 通过激活函数 Identity,节点的输入等于输出。它完美拟合于潜在行为是线性(与线性回归相似)的任务。当存在非线性,单独使用该激活函数是不够的,但它依然可以在最终输出节点上作为激活函数用于回归任务。
  • 二元阶梯函数(Binary Step Function)中,如果Y的值高于某个特定值(称为阈值),则输出为True(或已激活),如果小于阈值,则输出为false(或未激活)。这在分类器中非常有用。
  • S形函数 称为S形函数。逻辑和双曲正切函数是常用的S型函数。有两种:
  • Sigmoid函数 是一种逻辑函数,其中输出值为二进制或从0到1变化。
  • tanh函数 是一种逻辑函数,其输出值在-1到1之间变化。也称为双曲正切函数或tanh。
  • ReLU函数又称为修正线性单元(Rectified Linear Unit),是一种分段线性函数,其弥补了sigmoid函数以及tanh函数的梯度消失问题它是最常用的激活函数。对于x的负值,它输出0。

 

 

在R中实现神经网络

创建训练数据集

我们创建数据集。在这里,您需要数据中的两种属性或列:特征和标签。在上面显示的表格中,您可以查看学生的专业知识,沟通技能得分和学生成绩。因此,前两列(专业知识得分和沟通技能得分)是特征,第三列(学生成绩)是二进制标签。



#创建训练数据集

# 在这里,把多个列或特征组合成一组数据

test=data.frame(专业知识,沟通技能得分)

让我们构建神经网络分类器模型。

首先,导入神经网络,并通过传递标签和特征的参数集,数据集,隐藏层中神经元的数量以及误差计算来创建神经网络分类器模型。





# 拟合神经网络

nn(成绩~专业知识+沟通技能得分, hidden=3,act.fct = "logistic",
linear.output = FALSE)

这里得到模型的因变量、自变量、损失函数、激活函数、权重、结果矩阵(包含达到的阈值,误差,AIC和BIC以及每次重复的权重的矩阵)等信息:



$model.list

$model.list$response

[1] "成绩"



$model.list$variables

[1] "专业知识"     "沟通技能得分"





$err.fct

function (x, y)

{
1/2 * (y - x)^2

}
$act.fct

function (x)

{
1/(1 + exp(-x))

}
$net.result

$net.result[[1]]

[,1]
[1,] 0.980052980

[2,] 0.001292503

[3,] 0.032268860

[4,] 0.032437961

[5,] 0.963346989

[6,] 0.977629865





$weights

$weights[[1]]

$weights[[1]][[1]]

[,1]        [,2]       [,3]
[1,]  3.0583343  3.80801996 -0.9962571

[2,]  1.2436662 -0.05886708  1.7870905

[3,] -0.5240347 -0.03676600  1.8098647



$weights[[1]][[2]]

[,1]
[1,]   4.084756

[2,]  -3.807969

[3,] -11.531322

[4,]   3.691784







$generalized.weights

$generalized.weights[[1]]

[,1]       [,2]
[1,]  0.15159066 0.09467744

[2,]  0.01719274 0.04320642

[3,]  0.15657354 0.09778953

[4,] -0.46017408 0.34621212

[5,]  0.03868753 0.02416267

[6,] -0.54248384 0.37453006





$startweights

$startweights[[1]]

$startweights[[1]][[1]]

[,1]        [,2]       [,3]
[1,]  0.1013318 -1.11757311 -0.9962571

[2,]  0.8583704 -0.15529112  1.7870905

[3,] -0.8789741  0.05536849  1.8098647



$startweights[[1]][[2]]

[,1]
[1,] -0.1283200

[2,] -1.0932526

[3,] -1.0077311

[4,] -0.5212917







$result.matrix

[,1]
error                      0.002168460

reached.threshold          0.007872764

steps                    145.000000000

Intercept.to.1layhid1      3.058334288

专业知识.to.1layhid1       1.243666180

沟通技能得分.to.1layhid1  -0.524034687

Intercept.to.1layhid2      3.808019964

专业知识.to.1layhid2      -0.058867076

沟通技能得分.to.1layhid2  -0.036766001

Intercept.to.1layhid3     -0.996257068

专业知识.to.1layhid3       1.787090472

沟通技能得分.to.1layhid3   1.809864672

Intercept.to.成绩          4.084755522

1layhid1.to.成绩          -3.807969087

1layhid2.to.成绩         -11.531321534

1layhid3.to.成绩           3.691783805

绘制神经网络

让我们绘制您的神经网络模型。



# 绘图神经网络

plot(nn)

 

创建测试数据集

创建测试数据集:专业知识得分和沟通技能得分



# 创建测试集

test=data.frame(专业知识,沟通技能得分)

预测测试集的结果

使用计算函数预测测试数据的概率得分。



## 使用神经网络进行预测

Pred$result

0.9928202080

0.3335543925

0.9775153014

现在,将概率转换为二进制类。



# 将概率转换为设置阈值0.5的二进制类别

pred <- ifelse(prob>0.5, 1, 0)
pred

 
1

0

1

预测结果为1,0和1。

利弊

神经网络更灵活,可以用于回归和分类问题。神经网络非常适合具有大量输入(例如图像)的非线性数据集,可以使用任意数量的输入和层,可以并行执行工作。

还有更多可供选择的算法,例如SVM,决策树和回归算法,这些算法简单,快速,易于训练并提供更好的性能。神经网络更多的是黑盒子,需要更多的开发时间和更多的计算能力。与其他机器学习算法相比,神经网络需要更多的数据。NN仅可用于数字输入和非缺失值数据集。一位著名的神经网络研究人员说:  “神经网络是解决任何问题的第二好的方法。最好的方法是真正理解问题。”

神经网络的用途

神经网络的特性提供了许多应用方面,例如:

  • 模式识别: 神经网络非常适合模式识别问题,例如面部识别,物体检测,指纹识别等。
  • 异常检测: 神经网络擅长异常检测,它们可以轻松检测出不适合常规模式的异常模式。
  • 时间序列预测: 神经网络可用于预测时间序列问题,例如股票价格,天气预报。
  • 自然语言处理: 神经网络在自然语言处理任务中提供了广泛的应用,例如文本分类,命名实体识别(NER),词性标记,语音识别和拼写检查。

 


相关文章
|
13天前
|
存储 安全 物联网
浅析Kismet:无线网络监测与分析工具
Kismet是一款开源的无线网络监测和入侵检测系统(IDS),支持Wi-Fi、Bluetooth、ZigBee等协议,具备被动监听、实时数据分析、地理定位等功能。广泛应用于安全审计、网络优化和频谱管理。本文介绍其安装配置、基本操作及高级应用技巧,帮助用户掌握这一强大的无线网络安全工具。
43 9
浅析Kismet:无线网络监测与分析工具
|
16天前
|
数据采集 机器学习/深度学习 人工智能
基于AI的网络流量分析:构建智能化运维体系
基于AI的网络流量分析:构建智能化运维体系
90 13
|
15天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
67 1
|
20天前
|
监控 安全 BI
什么是零信任模型?如何实施以保证网络安全?
随着数字化转型,网络边界不断变化,组织需采用新的安全方法。零信任基于“永不信任,永远验证”原则,强调无论内外部,任何用户、设备或网络都不可信任。该模型包括微分段、多因素身份验证、单点登录、最小特权原则、持续监控和审核用户活动、监控设备等核心准则,以实现强大的网络安全态势。
|
19天前
|
安全 网络协议 网络安全
网络不稳定导致HTTP代理频繁掉线的分析
随着数字化时代的加速发展,网络安全、隐私保护及内容访问自由成为用户核心需求。HTTP代理服务器因其独特技术优势受到青睐,但其掉线问题频发。本文分析了HTTP代理服务器不稳定导致掉线的主要原因,包括网络问题、服务器质量、用户配置错误及IP资源问题等方面。
60 0
|
2月前
|
安全 网络协议 网络安全
【Azure 环境】从网络包中分析出TLS加密套件信息
An TLS 1.2 connection request was received from a remote client application, but non of the cipher suites supported by the client application are supported by the server. The connection request has failed. 从远程客户端应用程序收到 TLS 1.2 连接请求,但服务器不支持客户端应用程序支持的任何密码套件。连接请求失败。
|
22天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
61 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
49 10
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
61 10