matlab使用贝叶斯优化的深度学习:卷积神经网络CNN

简介: matlab使用贝叶斯优化的深度学习:卷积神经网络CNN

此示例说明如何将贝叶斯优化应用于深度学习,以及如何为卷积神经网络找到最佳网络超参数和训练选项。

要训练深度神经网络,必须指定神经网络架构以及训练算法的选项。选择和调整这些超参数可能很困难并且需要时间。贝叶斯优化是一种非常适合用于优化分类和回归模型的超参数的算法。

 

准备数据

下载CIFAR-10数据集[1]。该数据集包含60,000张图像,每个图像的大小为32 x 32和三个颜色通道(RGB)。整个数据集的大小为175 MB。

加载CIFAR-10数据集作为训练图像和标签,并测试图像和标签。


 
[XTrain,YTrain,XTest,YTest] = loadCIFARData(datadir);
idx = randperm(numel(YTest),5000);XValidation = XTest(:,:,:,idx);XTest(:,:,:,idx) = [];YValidation = YTest(idx);YTest(idx) = [];

您可以使用以下代码显示训练图像的样本。


figure;idx = randperm(numel(YTrain),20);for i = 1:numel(idx)subplot(4,5,i);imshow(XTrain(:,:,:,idx(i)));end

选择要优化的变量

选择要使用贝叶斯优化进行优化的变量,并指定要搜索的范围。此外,指定变量是否为整数以及是否在对数空间中搜索区间。优化以下变量:

  • 网络部分的深度。此参数控制网络的深度。该网络具有三个部分,每个部分具有SectionDepth相同的卷积层。因此,卷积层的总数为3*SectionDepth。脚本后面的目标函数将每一层中的卷积过滤器数量与成正比1/sqrt(SectionDepth)。结果,对于不同的截面深度,每次迭代的参数数量和所需的计算量大致相同。
  • 最佳学习率取决于您的数据以及您正在训练的网络。
  • 随机梯度下降动量。
  • L2正则化强度。

optimVars = [optimizableVariable('SectionDepth',[1 3],'Type','integer')optimizableVariable('InitialLearnRate',[1e-2 1],'Transform','log')optimizableVariable('Momentum',[0.8 0.98])optimizableVariable('L2Regularization',[1e-10 1e-2],'Transform','log')];
    执行贝叶斯优化

使用训练和验证数据作为输入,为贝叶斯优化器创建目标函数。目标函数训练卷积神经网络,并在验证集上返回分类误差。


ObjFcn = makeObjFcn(XTrain,YTrain,XValidation,YValidation);

通过最小化验证集上的分类误差来执行贝叶斯优化。为了充分利用贝叶斯优化的功能,您应该至少执行30个目标函数评估。

每个网络完成训练后,bayesopt将结果输出到命令窗口。然后该函数返回中的文件名BayesObject.UserDataTrace。目标函数将网络保存,并将文件名返回给bayesopt



|===================================================================================================================================|| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | SectionDepth | InitialLearn-|     Momentum | L2Regulariza-||      | result |             | runtime     | (observed)  | (estim.)    |              | Rate         |              | tion         ||===================================================================================================================================||    1 | Best   |        0.19 |        2201 |        0.19 |        0.19 |            3 |     0.012114 |       0.8354 |    0.0010624 |
|    2 | Accept |      0.3224 |      1734.1 |        0.19 |     0.19636 |            1 |     0.066481 |      0.88231 |    0.0026626 |

|    3 | Accept |      0.2076 |      1688.7 |        0.19 |     0.19374 |            2 |     0.022346 |      0.91149 |    8.242e-10 |

|    4 | Accept |      0.1908 |      2167.2 |        0.19 |      0.1904 |            3 |      0.97586 |      0.83613 |   4.5143e-08 |

|    5 | Accept |      0.1972 |      2157.4 |        0.19 |     0.19274 |            3 |      0.21193 |      0.97995 |   1.4691e-05 |

|    6 | Accept |      0.2594 |      2152.8 |        0.19 |        0.19 |            3 |      0.98723 |      0.97931 |   2.4847e-10 |

|    7 | Best   |      0.1882 |      2257.5 |      0.1882 |     0.18819 |            3 |       0.1722 |       0.8019 |   4.2149e-06 |

|    8 | Accept |      0.8116 |      1989.7 |      0.1882 |     0.18818 |            3 |      0.42085 |      0.95355 |    0.0092026 |

|    9 | Accept |      0.1986 |        1836 |      0.1882 |     0.18821 |            2 |     0.030291 |      0.94711 |   2.5062e-05 |

|   10 | Accept |      0.2146 |      1909.4 |      0.1882 |     0.18816 |            2 |     0.013379 |       0.8785 |   7.6354e-09 |

|   11 | Accept |      0.2194 |        1562 |      0.1882 |     0.18815 |            1 |      0.14682 |      0.86272 |   8.6242e-09 |

|   12 | Accept |      0.2246 |      1591.2 |      0.1882 |     0.18813 |            1 |      0.70438 |      0.82809 |   1.0102e-06 |

|   13 | Accept |      0.2648 |      1621.8 |      0.1882 |     0.18824 |            1 |     0.010109 |      0.89989 |   1.0481e-10 |

|   14 | Accept |      0.2222 |        1562 |      0.1882 |     0.18812 |            1 |      0.11058 |      0.97432 |   2.4101e-07 |

|   15 | Accept |      0.2364 |      1625.7 |      0.1882 |     0.18813 |            1 |     0.079381 |       0.8292 |   2.6722e-05 |

|   16 | Accept |        0.26 |      1706.2 |      0.1882 |     0.18815 |            1 |     0.010041 |      0.96229 |   1.1066e-05 |

|   17 | Accept |      0.1986 |      2188.3 |      0.1882 |     0.18635 |            3 |      0.35949 |      0.97824 |    3.153e-07 |

|   18 | Accept |      0.1938 |      2169.6 |      0.1882 |     0.18817 |            3 |     0.024365 |      0.88464 |   0.00024507 |

|   19 | Accept |      0.3588 |      1713.7 |      0.1882 |     0.18216 |            1 |     0.010177 |      0.89427 |    0.0090342 |

|   20 | Accept |      0.2224 |      1721.4 |      0.1882 |     0.18193 |            1 |      0.09804 |      0.97947 |   1.0727e-10 |

|===================================================================================================================================|| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | SectionDepth | InitialLearn-|     Momentum | L2Regulariza-||      | result |             | runtime     | (observed)  | (estim.)    |              | Rate         |              | tion         ||===================================================================================================================================||   21 | Accept |      0.1904 |      2184.7 |      0.1882 |     0.18498 |            3 |     0.017697 |      0.95057 |   0.00022247 |
|   22 | Accept |      0.1928 |      2184.4 |      0.1882 |     0.18527 |            3 |      0.06813 |       0.9027 |   1.3521e-09 |

|   23 | Accept |      0.1934 |      2183.6 |      0.1882 |      0.1882 |            3 |     0.018269 |      0.90432 |    0.0003573 |

|   24 | Accept |       0.303 |      1707.9 |      0.1882 |     0.18809 |            1 |     0.010157 |      0.88226 |   0.00088737 |

|   25 | Accept |       0.194 |      2189.1 |      0.1882 |     0.18808 |            3 |     0.019354 |      0.94156 |   9.6197e-07 |

|   26 | Accept |      0.2192 |      1752.2 |      0.1882 |     0.18809 |            1 |      0.99324 |      0.91165 |   1.1521e-08 |

|   27 | Accept |      0.1918 |        2185 |      0.1882 |     0.18813 |            3 |      0.05292 |       0.8689 |   1.2449e-05 |
__________________________________________________________

Optimization completed.MaxTime of 50400 seconds reached.Total function evaluations: 27Total elapsed time: 51962.3666 seconds.Total objective function evaluation time: 51942.8833
Best observed feasible point:SectionDepth    InitialLearnRate    Momentum    L2Regularization____________    ________________    ________    ________________
3               0.1722          0.8019        4.2149e-06
Observed objective function value = 0.1882Estimated objective function value = 0.18813Function evaluation time = 2257.4627
Best estimated feasible point (according to models):SectionDepth    InitialLearnRate    Momentum    L2Regularization____________    ________________    ________    ________________
3               0.1722          0.8019        4.2149e-06
Estimated objective function value = 0.18813Estimated function evaluation time = 2166.2402

评估最终网络

加载优化中发现的最佳网络及其验证准确性。


valError = 0.1882

预测测试集的标签并计算测试误差。将测试集中每个图像的分类视为具有一定成功概率的独立事件,这意味着错误分类的图像数量遵循二项式分布。使用它来计算标准误差(testErrorSE)和testError95CI广义误差率的大约95%置信区间()。这种方法通常称为Wald方法



testError95CI = 1×2
0.1756    0.1972

绘制混淆矩阵以获取测试数据。通过使用列和行摘要显示每个类的精度和召回率。

 

您可以使用以下代码显示测试图像及其预测的类以及这些类的概率。

优化目标函数

定义用于优化的目标函数。

定义卷积神经网络架构。

  • 在卷积层上填充,以便空间输出大小始终与输入大小相同。
  • 每次使用最大池化层对空间维度进行2倍的下采样时,将过滤器的数量增加2倍。这样做可确保每个卷积层所需的计算量大致相同。
  • 选择与成正比的滤波器数量,以1/sqrt(SectionDepth)使不同深度的网络具有大致相同数量的参数,并且每次迭代所需的计算量大致相同。要增加网络参数的数量和整体网络灵活性,请增加numF。要训练更深的网络,请更改SectionDepth变量的范围。
  • 使用convBlock(filterSize,numFilters,numConvLayers)创建的块numConvLayers卷积层,每个具有指定filterSizenumFilters过滤器,并且每个随后分批正常化层和RELU层。该convBlock函数在本示例的末尾定义。

指定验证数据,然后选择一个'ValidationFrequency'值,以便trainNetwork每个时期对网络进行一次验证。训练固定的时期数,并在最后一个时期将学习率降低10倍。这减少了参数更新的噪音,并使网络参数的沉降更接近损耗函数的最小值。

使用数据增强可沿垂直轴随机翻转训练图像,并将它们随机水平和垂直转换为四个像素。

训练网络并在训练过程中绘制训练进度。

 

在验证集上评估经过训练的网络,计算预测的图像标签,并在验证数据上计算错误率。

创建一个包含验证错误的文件名,然后将网络,验证错误和训练选项保存到磁盘。目标函数fileName作为输出参数bayesopt返回,并返回中的所有文件名BayesObject.UserDataTrace

convBlock函数创建一个numConvLayers卷积层块,每个卷积层都有一个指定的filterSizenumFilters过滤器,每个卷积层后面都有一个批处理归一化层和一个ReLU层。

参考文献

[1]克里热夫斯基,亚历克斯。“从微小的图像中学习多层功能。” (2009)


相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
130 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
13天前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
156 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
42 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
206 80
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
116 10
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。

热门文章

最新文章