R语言ARMA-GARCH-COPULA模型和金融时间序列案例

简介: R语言ARMA-GARCH-COPULA模型和金融时间序列案例

最近我被要求撰写关于金融时间序列的copulas的调查。从读取数据中获得各种模型的描述,包括一些图形和统计输出。


 




> oil = read.xlsx(temp,sheetName =“DATA”,dec =“,”)

然后我们可以绘制这三个时间序列



1 1997-01-10 2.73672 2.25465 3.3673 1.5400


2 1997-01-17 -3.40326 -6.01433 -3.8249 -4.1076


3 1997-01-24 -4.09531 -1.43076 -6.6375 -4.6166


4 1997-01-31 -0.65789 0.34873 0.7326 -1.5122


5 1997-02-07 -3.14293 -1.97765 -0.7326 -1.8798


6 1997-02-14 -5.60321 -7.84534 -7.6372 -11.0549

这个想法是在这里使用一些多变量ARMA-GARCH过程。这里的启发式是第一部分用于模拟时间序列平均值的动态,第二部分用于模拟时间序列方差的动态。

本文考虑了两种模型

  • 关于ARMA模型残差的多变量GARCH过程(或方差矩阵动力学模型)
  • 关于ARMA-GARCH过程残差的多变量模型(基于copula)

因此,这里将考虑不同的序列,作为不同模型的残差获得。我们还可以将这些残差标准化。

ARMA模型



> fit1 = arima(x = dat [,1],order = c(2,0,1))
> fit2 = arima(x = dat [,2],order = c(1,0,1))
> fit3 = arima(x = dat [,3],order = c(1,0,1))
> m < - apply(dat_arma,2,mean)
> v < - apply(dat_arma,2,var)
> dat_arma_std < - t((t(dat_arma)-m)/ sqrt(v))

ARMA-GARCH模型



> fit1 = garchFit(formula = ~arma(2,1)+ garch(1,1),data = dat [,1],cond.dist =“std”)
> fit2 = garchFit(formula = ~arma(1,1)+ garch(1,1),data = dat [,2],cond.dist =“std”)
> fit3 = garchFit(formula = ~arma(1,1)+ garch(1,1),data = dat [,3],cond.dist =“std”)
> m_res < - apply(dat_res,2,mean)
> v_res < - apply(dat_res,2,var)
> dat_res_std = cbind((dat_res [,1] -m_res [1])/ sqrt(v_res [1]),(dat_res [,2] -m_res [2])/ sqrt(v_res [2]),(dat_res [ ,3] -m_res [3])/ SQRT(v_res [3]))

多变量GARCH模型

可以考虑的第一个模型是协方差矩阵多变量EWMA

> ewma = EWMAvol(dat_res_std,lambda = 0.96)

波动性


> emwa_series_vol = function(i = 1){
+ lines(Time,dat_arma [,i] + 40,col =“gray”)
+ j = 1
+ if(i == 2)j = 5
+ if(i == 3)j = 9

隐含相关性



> emwa_series_cor = function(i = 1,j = 2){
+ if((min(i,j)== 1)&(max(i,j)== 2)){
+ a = 1; B = 9; AB = 3}
+ r = ewma $ Sigma.t [,ab] / sqrt(ewma $ Sigma.t [,a] *
+ ewma $ Sigma.t [,b])
+ plot(Time,r,type =“l”,ylim = c(0,1))
+}

多变量GARCH,即BEKK(1,1)模型,例如使用:



> bekk = BEKK11(dat_arma)
> bekk_series_vol function(i = 1){
+ plot(Time, $ Sigma.t [,1],type =“l”,
+ ylab = (dat)[i],col =“white”,ylim = c(0,80))
+ lines(Time,dat_arma [,i] + 40,col =“gray”)
+ j = 1
+ if(i == 2)j = 5


+ if(i == 3)j = 9


> bekk_series_cor = function(i = 1,j = 2){
+ a = 1; B = 5; AB = 2}
+ a = 1; B = 9; AB = 3}
+ a = 5; B = 9; AB = 6}
+ r = bk $ Sigma.t [,ab] / sqrt(bk $ Sigma.t [,a] *
+ bk $ Sigma.t [,b])

 

从单变量GARCH模型中模拟残差

第一步可能是考虑残差的一些静态(联合)分布。单变量边缘分布是


边缘密度的轮廓(使用双变量核估计获得)

也可以将copula密度可视化(上面有一些非参数估计,下面是参数copula)



> copula_NP = function(i = 1,j = 2){
+ n = nrow(uv)
+ s = 0.3


+ norm.cop < - normalCopula(0.5)
+ norm.cop < - normalCopula(fitCopula(norm.cop,uv)@estimate)
+ dc = function(x,y)dCopula(cbind(x,y),norm.cop)
+ ylab = names(dat)[j],zlab =“copule Gaussienne”,ticktype =“detailed”,zlim = zl)
+
+ t.cop < - tCopula(0.5,df = 3)
+ t.cop < - tCopula(t.fit [1],df = t.fit [2])
+ ylab = names(dat)[j],zlab =“copule de Student”,ticktype =“detailed”,zlim = zl)
+}

可以考虑这个 函数,

计算三个序列的的经验版本,并将其与一些参数版本进行比较,



>


> lambda = function(C){
+ l = function(u)pcopula(C,cbind(u,u))/ u
+ v = Vectorize(l)(u)
+ return(c(v,rev(v)))
+}
>


> graph_lambda = function(i,j){
+ X = dat_res
+ U = rank(X [,i])/(nrow(X)+1)
+ V = rank(X [,j])/(nrow(X)+1)


+ normal.cop < - normalCopula(.5,dim = 2)
+ t.cop < - tCopula(.5,dim = 2,df = 3)
+ fit1 = fitCopula(normal.cop,cbind(U,V),method =“ml”)
d(U,V),method =“ml”)
+ C1 = normalCopula(fit1 @ copula @ parameters,dim = 2)
+ C2 = tCopula(fit2 @ copula @ parameters [1],dim = 2,df = trunc(fit2 @ copula @ parameters [2]))
+

但人们可能想知道相关性是否随时间稳定。



> time_varying_correl_2 = function(i = 1,j = 2,
+ nom_arg =“Pearson”){
+ uv = dat_arma [,c(i,j)]
nom_arg))[1,2]
+}
> time_varying_correl_2(1,2)
> time_varying_correl_2(1,2,“spearman”)
> time_varying_correl_2(1,2,“kendall”)

斯皮尔曼与时变排名相关系数

或肯德尔 相关系数

为了模型的相关性,考虑DCC模型(S)


> m2 = dccFit(dat_res_std)
> m3 = dccFit(dat_res_std,type =“Engle”)
> R2 = m2 $ rho.t
> R3 = m3 $ rho.t

要获得一些预测, 使用例如



> garch11.spec = ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model = list(garchOrder = c(1,1),model =“GARCH”))
> dcc.garch11.spec = dccspec(uspec = multispec(replicate(3,garch11.spec)),dccOrder = c(1,1),
distribution =“mvnorm”)
> dcc.fit = dccfit(dcc.garch11.spec,data = dat)
> fcst = dccforecast(dcc.fit,n.ahead = 200)

 

相关文章
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
10月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
11月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
11月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
193 9
|
10月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
9月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
182 3