Matlab通过市场数据校准Hull-White利率模型参数

简介: Matlab通过市场数据校准Hull-White利率模型参数

利率衍生证券的定价依赖于描述基本过程的模型。这些利率模型取决于您必须通过将模型预测与市场上可用的现有数据进行匹配来确定的一个或多个参数。在Hull-White模型中,有两个与短期利率过程相关的参数:均值回归和波动率。

对于Hull-White模型,关于均值回归(α)和波动率(σ)最小化是二维的。也就是说,校准Hull-White模型可最大程度地减少模型的预测价格与观察到的市场价格之间的差异。


Hull-White校准案例

使用市场数据来识别为构建工具定价的Hull-White树所需的隐含波动率(σ)和均值回归(α)系数,必须对市场数据进行插值。

考虑具有以下参数的上限:



Strike = 0.0690;
Reset = 4;
Principal = 1000;
  datestr(capletDates')
ans =


21-Mar-2008
21-Jun-2008
21-Sep-2008
21-Dec-2008
21-Mar-2009
21-Jun-2009
21-Sep-2009
21-Dec-2009
21-Mar-2010
21-Jun-2010
21-Sep-2010
21-Dec-2010
21-Mar-2011

在最佳情况下,查找带有Strike =的 市场波动率 0.0690,以及列出的到期日,但找到这些确切数据的可能性很小。结果,使用市场上可用的数据并进行插值。

根据市场数据,您可以获得不同日期和行使价的上限信息。

 

到期 协议1 = 0.0590 协议2 = 0.0790
2008年3月21日 0.1533 0. 1526
2008年6月21日 0.1731 0. 1730
2008年9月21日 0. 1727 0. 1726
2008年12月21日 0. 1752 0. 1747
2009年3月21日 0. 1809 0. 1808
2009年6月21日 0. 1809 0. 1792
2009年9月21日 0. 1805 0. 1797
2009年12月21日 0.1802 0. 1794
2010年3月21日 0.1802 0. 1733
2010年6月21日 0. 1757 0. 1751
2010年9月21日 0. 1755 0. 1750
2010年12月21日 0. 1755 0. 1745
2011年3月21日 0. 1726 0. 1719

要求日期,协议价和实际波动分为三个变量:  MarketStrike,  MarketMat,和 MarketVol

MarketStrike = [0.0590; 0.0790];
MarketMat = {'21-Mar-2008';
'21-Jun-2008';
'21-Sep-2008';




MarketVol = [0.1533 0.1731 0.1727 0.1752 0.1809 0.1800 0.1805 0.1802 0.1735 0.1757 ...

使用此数据完成输入参数 RateSpec



RateSpec =


FinObj: 'RateSpec'
Compounding: 4
Disc: [14x1 double]
Rates: [14x1 double]
EndTimes: [14x1 double]
StartTimes: [14x1 double]
EndDates: [14x1 double]
StartDates: 733428
ValuationDate: 733428
Basis: 0
EndMonthRule: 1

调用校准例程以找到波动率参数Alpha和Sigma的值

根据市场数据计算的值 AlphaSigma 。例如,您可以将目标函数的公差定义为 100*eps

Local minimum possible.


> In hwcalbycapfloor at 93
In hwcalbycap at 75


Alpha =


1.0000e-06




Sigma =


0.0127

先前的警告表明转换不是最佳的。使用的搜索算法未找到符合所有约束的解决方案。要辨别该解决方案是否可接受,请通过为以下项指定第三个输出(OptimOut)来查看 优化结果:

hwcalb(RateSpec, MarketStrike, MarketMat,...

结构的 OptimOut.residual 字段 OptimOut是优化残差。此值包含Black caplet和优化过程中计算出的值之间的差异。您可以使用该 OptimOut.residual 值计算与Black Caplet价格相比的百分比差异(误差),然后确定残差是否可以接受,决定是否接受以单一数值参数化的市场 AlphaSigma


使用市场数据和Black模型获取价格

Black -76模型被认为是世界范围内广泛接受的互换期权定价模型,互换期权计算公式看起来和期权价格公式一 样,这表示在使用Black模型对互换期权进行定价时,可以用和定价期权时同样的方法进行计算.为了使Black模型生效,只需输入由市场决定的隐含波动率即可。

为了确定优化的有效性,请使用Black公式和市场数据计算参考值。请注意,您必须首先对市场数据进行插值以获得用于计算的数据量:




FlatVol = interp2(Mats, Strikes, MarketVol, datenum(Maturity),

使用Black模型计算价格:

capbybike, Settle, Maturity, FlatVol,...

Caplets =


0.3210
1.6355

比较优化值和Black值并以图形方式显示

在计算了参考值之后,请通过分析和图形方式比较这些值,以确定是否计算出的单个值 AlphaSigma 提供适当的近似值:


plot(MarketMatNum(2:end), Caplets, 'or', MarketMatNum(2:end), O
ylabel('Caplet Price');
t
set(gcf, 'NumberT

使用Black,HW分析和HW树模型比较上限价格。


相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
10天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
1月前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
1月前
|
算法
基于Kronig-Penney能带模型的MATLAB求解与仿真
基于Kronig-Penney能带模型的MATLAB求解与仿真,利用MATLAB的多种数学工具简化了模型分析计算过程。该模型通过一维周期势垒描述晶体中电子运动特性,揭示了能带结构的基本特征,对于半导体物理研究具有重要价值。示例代码展示了如何使用MATLAB进行模型求解和图形绘制。
|
1月前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
|
1月前
|
算法
基于最小二乘递推算法的系统参数辨识matlab仿真
该程序基于最小二乘递推(RLS)算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计并计算误差及收敛曲线,对比不同信噪比下的估计误差。在MATLAB 2022a环境下运行,结果显示了四组误差曲线。RLS算法适用于实时、连续数据流中的动态参数辨识,通过递推方式快速调整参数估计,保持较低计算复杂度。
|
2月前
|
算法 5G 数据安全/隐私保护
SCM信道模型和SCME信道模型的matlab特性仿真,对比空间相关性,时间相关性,频率相关性
该简介展示了使用MATLAB 2022a进行无线通信信道仿真的结果,仿真表明信道的时间、频率和空间相关性随间隔增加而减弱,并且宏小区与微小区间的相关性相似。文中介绍了SCM和SCME模型,分别用于WCDMA和LTE/5G系统仿真,重点在于其空间、时间和频率相关性的建模。SCME模型在SCM的基础上进行了扩展,提供了更精细的参数化,增强了模型的真实性和复杂度。最后附上了MATLAB核心程序,用于计算不同天线间距下的空间互相关性。
76 0
|
2月前
|
算法 5G 数据安全/隐私保护
3D-MIMO信道模型的MATLAB模拟与仿真
该研究利用MATLAB 2022a进行了3D-MIMO技术的仿真,结果显示了不同场景下的LOS概率曲线。3D-MIMO作为5G关键技术之一,通过三维天线阵列增强了系统容量和覆盖范围。其信道模型涵盖UMa、UMi、RMa等场景,并分析了LOS/NLOS传播条件下的路径损耗、多径效应及空间相关性。仿真代码展示了三种典型场景下的LOS概率分布。
88 1
|
2月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
2月前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。