R语言有RStan的多维验证性因子分析(CFA)

简介: R语言有RStan的多维验证性因子分析(CFA)

如果您已经熟悉RStan,那么您需要组合的基本概念是具有相关随机斜率和异方差误差的标准多级模型。

我将R代码嵌入到演示中。

我喜欢将大多数统计方法理解为回归模型。这是一种适用于SEM和IRT模型的方法。在这里,我将重点关注验证性因子分析(CFA),因此我将首先从一个易于适用于任何多级回归软件的模型开发CFA:

dat.l <- tidyr::gather(dat, item, score, x1:x9)
dat.l$item.no <- as.integer(gsub("x", "", dat.l$item))


library(lme4)


lmer(score ~ 0 + factor(item.no) + (1 | ID), dat.l, REML = FALSE)


# Random effects:
# Groups   Name        Std.Dev.
# ID       (Intercept) 0.5758
# Residual             0.9694
# Number of obs: 2709, groups:  ID, 301

上面适用于ML而不是REML的模型与一维CFA相同。使用:


λ = α √ α 2 + σ 2= 0.5758 √ 0.5758 2 + 0.9694 2= 0.5107λ=αα2+σ2=0.57580.57582+0.96942=0.5107

请注意,在lavaan语法中,因子被标准化为使用的方差为1 std.lv = TRUE




parameterEstimates(sem(
"F1 =~ a * x1 + a * x2 + a * x3 + a * x4 + a * x5 + a * x6 + a * x7 + a * x8 + a * x9\n
x5 ~~ f * x5\nx6 ~~ f * x6\nx7 ~~ f * x7\nx8 ~~ f * x8\nx9 ~~ f * x9",
dat, std.lv = TRUE
), standardized = TRUE)[c(1:2, 10:11), c(1:5, 12)]


#    lhs op rhs label   est std.all
# 1   F1 =~  x1     a 0.576   0.511
# 2   F1 =~  x2     a 0.576   0.511
# 10  x1 ~~  x1     f 0.940   0.739
# 11  x2 ~~  x2     f 0.940   0.739

让我们扩展模型以包括多个因素。为了包括多个因子,我们以长格式创建一个指标列,用于唯一标识项目所属的因子。


dat.l$Fs <- ((dat.l$item.no - 1) %/% 3) + 1


lmer(score ~ 0 + factor(item) + (0 + factor(Fs) | ID), dat.l, REML = FALSE)


# Random effects:
#  Groups   Name        Std.Dev. Corr
#  ID       factor(Fs)1 0.7465
#           factor(Fs)2 0.9630   0.41
#           factor(Fs)3 0.6729   0.38 0.30
#  Residual             0.7909

相应的lavaan模型是:




parameterEstimates(sem(
"F1 =~ a * x1 + a * x2 + a * x3\nF2 =~ b * x4 + b * x5 + b * x6\nF3 =~ c * x7 + c * x8 + c * x9\n
x1 ~~ f * x1\nx2 ~~ f * x2\nx3 ~~ f * x3\nx4 ~~ f * x4\nx5 ~~ f * x5\n
dat, std.lv = TRUE
), standardized = TRUE)[c(1:10, 22:24), c(1:5, 12)]
#    lhs op rhs label   est std.all
# 1   F1 =~  x1     a 0.746   0.686
# 2   F1 =~  x2     a 0.746   0.686
# 3   F1 =~  x3     a 0.746   0.686
# 4   F2 =~  x4     b 0.963   0.773
# 5   F2 =~  x5     b 0.963   0.773
# 6   F2 =~  x6     b 0.963   0.773
# 7   F3 =~  x7     c 0.673   0.648
# 8   F3 =~  x8     c 0.673   0.648
# 9   F3 =~  x9     c 0.673   0.648
# 10  x1 ~~  x1     f 0.626   0.529
# 22  F1 ~~  F2       0.407   0.407
# 23  F1 ~~  F3       0.385   0.385
# 24  F2 ~~  F3       0.301   0.301

我们看到CFA中的因子载荷是多级的随机斜率标准偏差。并且,因子间相关矩阵匹配来自多级的随机斜率相关。

lavaan,模型语法将是:



# 删除误差方差约束

"F1 =~ a * X1 + a * X2 + a * X3\nF2 =~ b * X4 + b * X5 + b * X6\nF3 =~c * X7 + c * X8 + c * X9"

最后的变化是我们需要允许项目加载量按项目而不是因子来变化。我们这样做,就不能再使用多级回归软件来适应模型。

贝叶斯软件可以适合这样的复杂模型。我们必须为这个等式的不同组成部分指定先验。

 

在Stan语法中,所需的数据是:

data {
real g_alpha; //  inverse gamma
real g_beta; //  inverse gamma
int<lower = 0> Nf; // scalar
vector[N] response; //  responses

int<lower = 1, upper = Ni> items[N];
int<lower = 1, upper = Nf> factors[N];
}

估计的参数是:




parameters {
vector<lower = 0>[Ni] item_vars; 
vector<lower = 0>[Ni] alphas; // 负载
vector[Ni] betas; //  intercepts
}

我们需要一些转换参数来获得均值和方差。

transformed parameters {
vector[N] yhat;
vector[N] item_sds_i;


for (i in 1:N) {
yhat[i] = alphas[items[i]] * thetas[persons[i], factors[i]] + betas[items[i]];
item_sds_i[i] = sqrt(item_vars[items[i]]);
}
}
 
model {
matrix[Nf, Nf] A0;


L ~ lkj_corr_cholesky(Nf);
A0 = diag_pre_multiply(A, L);
thetas ~ multi_normal_cholesky(rep_vector(0, Nf), A0);




response ~ normal(yhat, item_sds_i);
}

最后,我们可以计算标准化载荷和因子间相关矩阵R:


generated quantities {
vector<lower = 0>[Ni] loadings_std; // 负载标准差
matrix[Nf, Nf] R;


}
}

我们可以做一些修改:

  • 我们可以在建模之前标准化项目响应,以提高计算稳定性
  • 然后在项目截取之前应用法线

然后运行模型的语法是:



# 拟合模型




cfa.mm <- stan_model(stanc_ret = stanc(file = "bayes_script/cfa.stan")) # Compile Stan code

什么是负荷?



#                  mean se_mean    sd  2.5%   50% 97.5% n_eff  Rhat
# alphas[1]       0.889   0.003 0.078 0.733 0.890 1.041   790 1.002
# alphas[4]       0.991   0.002 0.056 0.885 0.988 1.101  1263 1.002
# alphas[5]       1.102   0.002 0.062 0.980 1.102 1.224  1056 1.001
# alphas[9]       0.692   0.003 0.075 0.548 0.692 0.846   799 1.005
# loadings_std[1] 0.751   0.002 0.052 0.643 0.752 0.848   601 1.003
# loadings_std[4] 0.848   0.001 0.023 0.801 0.849 0.890  1275 1.003
# loadings_std[5] 0.851   0.001 0.023 0.803 0.852 0.891  1176 1.001
# loadings_std[9] 0.672   0.003 0.059 0.552 0.673 0.786   556 1.007


# 为了进行比较,lavaan负载为
parameterEstimates(cfa.lav.fit, standardized = TRUE)[1:9, c(1:5, 11)]


#   lhs op rhs   est    se std.all
# 1  F1 =~  x1 0.900 0.081   0.772
# 4  F2 =~  x4 0.990 0.057   0.852
# 5  F2 =~  x5 1.102 0.063   0.855
# 9  F3 =~  x9 0.670 0.065   0.665

对于因子间相关性:




probs = c(.025, .5, .975), digits_summary = 3)


#       mean se_mean    sd  2.5%   50% 97.5% n_eff  Rhat
# R[1,2] 0.435   0.001 0.065 0.303 0.437 0.557  2019 0.999
# R[1,3] 0.451   0.003 0.081 0.289 0.450 0.607   733 1.005
# R[2,3] 0.271   0.001 0.071 0.130 0.272 0.406  2599 1.000


#  lavaan:


#    lhs op rhs   est    se std.all
# 22  F1 ~~  F2 0.459 0.064   0.459
# 23  F1 ~~  F3 0.471 0.073   0.471
# 24  F2 ~~  F3 0.283 0.069   0.283
 


#               mean se_mean    sd  2.5%   50% 97.5% n_eff  Rhat
# item_vars[3] 0.829   0.003 0.095 0.652 0.828 1.026  1292 1.000
# item_vars[4] 0.383   0.001 0.049 0.292 0.381 0.481  1552 1.002
# item_vars[5] 0.459   0.001 0.059 0.351 0.456 0.581  1577 1.001
# item_vars[9] 0.575   0.004 0.085 0.410 0.575 0.739   532 1.008


#
parameterEstimates(cfa.lav.fit, standardized = TRUE)[10:18, 1:5]


#    lhs op rhs   est    se
# 12  x3 ~~  x3 0.844 0.091
# 13  x4 ~~  x4 0.371 0.048
# 14  x5 ~~  x5 0.446 0.058
# 18  x9 ~~  x9 0.566 0.071
 




#         mean se_mean    sd  2.5%   50% 97.5% n_eff  Rhat
# betas[2] 6.087   0.001 0.068 5.954 6.089 6.219  2540 1.001
# betas[3] 2.248   0.001 0.066 2.122 2.248 2.381  1980 1.002
# betas[6] 2.182   0.003 0.063 2.058 2.182 2.302   625 1.008
# betas[7] 4.185   0.002 0.066 4.054 4.186 4.315  1791 1.001


#  lavaan:
parameterEstimates(cfa.lav.fit, standardized = TRUE)[25:33, 1:5]
#    lhs op rhs   est    se
# 26  x2 ~1     6.088 0.068
# 27  x3 ~1     2.250 0.065
# 30  x6 ~1     2.186 0.063
# 31  x7 ~1     4.186 0.063

所以我们能够复制lavaan的结果。从这里,您可以以有趣的方式扩展模型以获得其他结果。


例如,如果要对因子进行回归,可以使用相关矩阵的后验和solve()函数来得出回归中因子的系数。在这里,我在因子2和3上回归因子1:



R <- extract(cfa.stan.fit, c("R[1, 2]", "R[1, 3]", "R[2, 3]"))
R <- cbind(R$`R[1,2]`, R$`R[1,3]`, R$`R[2,3]`)
coefs <- matrix(NA, nrow(R), ncol(R) - 1)
for (i in 1:nrow(R)) {
m <- matrix(c(1, R[i, 3], R[i, 3], 1), 2, 2)
coefs[i, ] <- solve(m, R[i, 1:2])
}; rm(i, m)
t(apply(coefs, 2, function (x) {
c(estimate = mean(x), sd = sd(x), quantile(x, c(.025, .25, .5, .75, .975)))
}))
#       estimate         sd      2.5%       25%       50%       75%     97.5%
# [1,] 0.3362981 0.07248634 0.1918812 0.2877936 0.3387682 0.3875141 0.4725508
# [2,] 0.3605951 0.08466494 0.1996710 0.3027047 0.3594806 0.4164141 0.5308578
相关文章
|
6月前
|
数据可视化 数据挖掘
使用R语言进行多维缩放分析
【4月更文挑战第27天】本文介绍了R语言中的多维缩放分析(MDS)技术,用于高维数据的可视化。MDS通过映射数据点到低维空间保持距离或相似性,帮助理解数据结构。R中的`cmdscale`和`isoMDS`函数可用于构建MDS模型,而`dist`计算距离矩阵。通过实例展示了如何分析消费者对品牌评价,`stressplot`和`procrustes`函数则用于模型解释和验证。R还支持经典MDS、度量MDS和非度量MDS等高级主题,为数据探索提供强大工具。
93 0
|
6月前
|
机器学习/深度学习 数据可视化
数据分享|R语言逻辑回归Logisitc逐步回归训练与验证样本估计分析心脏病数据参数可视化
数据分享|R语言逻辑回归Logisitc逐步回归训练与验证样本估计分析心脏病数据参数可视化
|
6月前
|
数据可视化 数据挖掘 索引
R语言层次聚类、多维缩放MDS分类RNA测序(RNA-seq)乳腺发育基因数据可视化|附数据代码2
R语言层次聚类、多维缩放MDS分类RNA测序(RNA-seq)乳腺发育基因数据可视化|附数据代码
|
6月前
|
存储 数据可视化 数据挖掘
R语言层次聚类、多维缩放MDS分类RNA测序(RNA-seq)乳腺发育基因数据可视化|附数据代码1
R语言层次聚类、多维缩放MDS分类RNA测序(RNA-seq)乳腺发育基因数据可视化|附数据代码
|
数据挖掘 Linux Python
R语言中实现多维数据交并补集合运算,利用tidyverse系列包,intersect、union、setdiff
R语言中实现多维数据交并补集合运算,利用tidyverse系列包,intersect、union、setdiff
R语言中实现多维数据交并补集合运算,利用tidyverse系列包,intersect、union、setdiff
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
22天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。