R语言线性分类判别LDA和二次分类判别QDA实例

简介: R语言线性分类判别LDA和二次分类判别QDA实例

一、线性分类判别

对于二分类问题,LDA针对的是:数据服从高斯分布,且均值不同,方差相同

概率密度:

p是数据的维度。

分类判别函数:

可以看出结果是关于x的一次函数:wx+w0,线性分类判别的说法由此得来。

参数计算:

 

二、二次分类判别

对于二分类问题,QDA针对的是:数据服从高斯分布,且均值不同,方差不同

数据方差相同的时候,一次判别就可以,如左图所示;但如果方差差别较大,就是一个二次问题了,像右图那样。

从sklearn给的例子中,也容易观察到:

QDA对数据有更好的适用性,QDA判别公式:

 

三、Fisher判据

  A-Fisher理论推导

Fisher一个总原则是:投影之后的数据,最小化类内误差,同时最大化类间误差

其中, 分别对应投影后的类均值。 对应投影后的类内方差。

重写类内总方差、类间距离:

准则函数重写:

容易求解:

其中 常借助SVD求解:Sw = U∑VT,Sw-1 = U∑-1VT,借助特征值分解也是可以的。

原文链接:http://tecdat.cn/?p=5689

 

判别分析包括可用于分类和降维的方法。线性判别分析(LDA)特别受欢迎,因为它既是分类器又是降维技术。二次判别分析(QDA)是LDA的变体,允许数据的非线性分离。最后,正则化判别分析(RDA)是LDA和QDA之间的折衷。

本文主要关注LDA,并探讨其在理论和实践中作为分类和可视化技术的用途。由于QDA和RDA是相关技术,我不久将描述它们的主要属性以及如何在R中使用它们。


四、线性判别分析实例

LDA是一种分类和降维技术,可以从两个角度进行解释。第一个是解释是概率性的,第二个是更多的程序解释,归功于费舍尔。第一种解释对于理解LDA的假设是有用的。第二种解释可以更好地理解LDA如何降低维数。

 

Fisher的LDA优化标准

Fisher的LDA优化标准规定组的质心应尽可能分散。这相当于找到一个线性组合ž= aŤXZ=aTX,使得aTaT相对于类内方差的类间方差最大化。

数据集

为了举例说明线性判别分析,我们将使用音素语音识别数据集。该数据集对于展示判别分析很有用,因为它涉及五种不同的结果。




library(RCurl)
f <- getURL('phoneme.csv')
df <- read.csv(textConnection(f), header=T)
print(dim(df))## [1] 4509  259

为了以后评估模型,我们将每个样本分配到培训或测试集中:


#logical :TRUE,如果 属于训练集 

train <- grepl("^train", df$speaker)
#删除非特征列
to.exclude <- c("row.names", "speaker""g")
feature.df <- df[, !colnames(df) %<strong>in</strong>% to.exclude]
test.set <- subset(feature.df, !train)
train.set <- subset(feature.df, train)
train.responses <- subset(df, train)$g
test.responses <- subset(df, !train)$g

在R中拟合LDA模型

我们可以通过以下方式拟合LDA模型:

library(MASS)
lda.model <- lda(train.set, grouping = train.responses)

LDA作为可视化技术

我们可以通过在缩放数据上应用变换矩阵将训练数据转换为规范坐标。要获得与predict.lda函数返回的结果相同的结果,我们需要首先围绕加权平均数据居中:

## [1] TRUE

我们可以使用前两个判别变量来可视化数据:

 

绘制两个LDA维度中的数据显示三个集群:

  • 群集1(左)由aaao音素组成
  • 群集2(右下角)由dcliy音素组成
  • 群集3(右上角)由sh音素组成

这表明两个维度不足以区分所有5个类别。然而,聚类表明可以非常好地区分彼此充分不同的音素。

我们还可以使用plot.lda函数绘制训练数据到所有判别变量对的映射,其中dimen参数可用于指定所考虑的维数:

 

为了可视化组的质心,我们可以创建自定义图:

 

解释后验概率

除了将数据转换为由分量x提供的判别变量之外,预测函数还给出后验概率,其可以用于分类器的进一步解释。例如:

1. ## [1] "Posterior of predicted class 'sh' is: 1"
2. ##        aa    ao   dcl    iy    sh
3. ## aa  0.797 0.203 0.000 0.000 0.000
4. ## ao  0.123 0.877 0.000 0.000 0.000
5. ## dcl 0.000 0.000 0.985 0.014 0.002
6. ## iy  0.000 0.000 0.001 0.999 0.000
7. ## sh  0.000 0.000 0.000 0.000 1.000

各个班级的后验表格表明该模型对音素aaao最不确定,这与我们对可视化的期望一致。

 

LDA作为分类器

如前所述,LDA的好处是我们可以选择用于分类的规范变量的数量。在这里,我们仍将通过使用多达四个规范变量进行分类来展示降级LDA的使用。

##   Rank Accuracy
## 1    1     0.51
## 2    2     0.71
## 3    3     0.86
## 4    4     0.92

正如从变换空间的视觉探索所预期的那样,测试精度随着每个附加维度而增加。由于具有四维的LDA获得最大精度,我们将决定使用所有判别坐标进行分类。

为了解释模型,我们可以可视化 分类器的性能:

 

在图中,预期的音素以不同的颜色显示,而模型预测通过不同的符号显示。具有100%准确度的模型将为每种颜色分配单个符号。

二次判别分析

QDA是LDA的变体,其中针对每类观察估计单个协方差矩阵。如果事先知道个别类别表现出不同的协方差,则QDA特别有用。QDA的缺点是它不能用作降维技术。

由于QDA估计每个类的协方差矩阵,因此它具有比LDA更多的有效参数。我们可以通过以下方式得出参数的数量。

因此,QDA参数的有效数量是ķ- 1 + K.p + K.p (p + 1 )2K−1+Kp+Kp(p+1)2。

由于QDA参数的数量在pp是二次的,因此当特征空间很大时,应小心使用QDA。

QDA在R

我们可以通过以下方式执行QDA:

的QDA和LDA对象之间的主要区别是,QDA具有p×pp×p的变换矩阵对于每个类k∈{1,…,K}k∈{1,…,K}。这些矩阵确保组内协方差矩阵是球形的,但不会导致子空间减小。因此,QDA不能用作可视化技术。

让我们确定QDA在音素数据集上是否优于LDA:

## [1] "Accuracy of QDA is: 0.84"
QDA的准确度略低于全级LDA的准确度。这可能表明共同协方差的假设适合于该数据集。

 

规范的判别分析

由于RDA是一种正则化技术,因此当存在许多潜在相关的特征时。现在让我们评估音素数据集上的RDA。

 

R中的RDA


 
rda.preds <- predict(rda.model, t(train.set), train.responses, t(test.set))


#确定每个Alpha的性能

rda.perf <- vector(, dim(rda.preds)[1])
for(i in seq(dim(rda.preds)[1])) {
<span style="color:#888888"># 每个gamma的性能
res <- apply(rda.preds[i,,], 1, function(x) length(which(x == as.numeric(test.responses))) / length(test.responses))
rda.perf[[i]] <- res
}
rda.perf <- do.call(rbind, rda.perf)
rownames(rda.perf) <- alphas

结论

判别分析对于多类问题特别有用。LDA非常易于理解,因为它可以减少维数。使用QDA,可以建模非线性关系。RDA是一种正则化判别分析技术,对大量特征特别有用。

相关文章
|
1天前
|
数据可视化 Python
R语言分析糖尿病数据:多元线性模型、MANOVA、决策树、典型判别分析、HE图、Box's M检验可视化
R语言分析糖尿病数据:多元线性模型、MANOVA、决策树、典型判别分析、HE图、Box's M检验可视化
|
2天前
|
机器学习/深度学习
【视频】R语言LDA线性判别、QDA二次判别分析分类葡萄酒品质数据|数据分享(下)
【视频】R语言LDA线性判别、QDA二次判别分析分类葡萄酒品质数据|数据分享
10 0
|
2天前
|
机器学习/深度学习 算法 数据可视化
【视频】R语言LDA线性判别、QDA二次判别分析分类葡萄酒品质数据|数据分享(上)
【视频】R语言LDA线性判别、QDA二次判别分析分类葡萄酒品质数据|数据分享
12 0
|
1天前
|
数据采集 数据挖掘 测试技术
python、R语言ARIMA-GARCH分析南方恒生中国企业ETF基金净值时间序列分析
python、R语言ARIMA-GARCH分析南方恒生中国企业ETF基金净值时间序列分析
11 1
|
1天前
R语言偏最小二乘回归PLS回归分析制药产品化学制造过程数据、缺失值填充、变量重要性
R语言偏最小二乘回归PLS回归分析制药产品化学制造过程数据、缺失值填充、变量重要性
|
1天前
|
算法 数据挖掘
R语言面板数据回归:含时间固定效应混合模型分析交通死亡率、酒驾法和啤酒税
R语言面板数据回归:含时间固定效应混合模型分析交通死亡率、酒驾法和啤酒税
|
1天前
|
机器学习/深度学习 数据可视化
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(下)
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享
|
1天前
|
机器学习/深度学习
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(上)
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享
|
1天前
|
数据可视化 数据挖掘 定位技术
数据分享|R语言生态学种群空间点格局分析:聚类泊松点过程对植物、蚂蚁巢穴分布数据可视化
数据分享|R语言生态学种群空间点格局分析:聚类泊松点过程对植物、蚂蚁巢穴分布数据可视化
|
1天前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言用逻辑回归预测BRFSS中风数据、方差分析anova、ROC曲线AUC、可视化探索
R语言用逻辑回归预测BRFSS中风数据、方差分析anova、ROC曲线AUC、可视化探索

热门文章

最新文章