R语言使用bootstrap和增量法计算广义线性模型(GLM)预测置信区间

简介: R语言使用bootstrap和增量法计算广义线性模型(GLM)预测置信区间

考虑简单的泊松回归 。给定的样本 ,其中 ,目标是导出用于一个95%的置信区间 给出 ,其中 是预测。

 

因此,我们要导出预测的置信区间,而不是观测值,即下图的点


> r=glm(dist~speed,data=cars,family=poisson)
> P=predict(r,type="response",
+ newdata=data.frame(speed=seq(-1,35,by=.2)))
> plot(cars,xlim=c(0,31),ylim=c(0,170))
> abline(v=30,lty=2)
> lines(seq(-1,35,by=.2),P,lwd=2,col="red")
> P0=predict(r,type="response",se.fit=TRUE,
+ newdata=data.frame(speed=30))
> points(30,P1$fit,pch=4,lwd=3)

 

最大似然估计


,Fisher信息来自标准最大似然理论。


这些值的计算基于以下计算

在对数泊松回归的情况下,


让我们回到最初的问题。

  • 线性组合的置信区间

获得置信区间的第一个想法是获得置信区间 (通过取边界的指数值)。渐近地,我们知道

因此,方差矩阵的近似将基于通过插入参数的估计量而获得。
然后,由于作为渐近多元分布,参数的任何线性组合也将是正态的,即具有正态分布。所有这些数量都可以轻松计算。首先,我们可以得到估计量的方差

因此,如果我们与回归的输出进行比较,


> summary(reg)$cov.unscaled
(Intercept)         speed
(Intercept)  0.0066870446 -3.474479e-04
speed       -0.0003474479  1.940302e-05
> V
[,1]          [,2]
[1,]  0.0066871228 -3.474515e-04
[2,] -0.0003474515  1.940318e-05

根据这些值,很容易得出线性组合的标准偏差,

一旦我们有了标准偏差和正态性,就得出了置信区间,然后,取边界的指数,就得到了置信区间


> segments(30,exp(P2$fit-1.96*P2$se.fit),
+ 30,exp(P2$fit+1.96*P2$se.fit),col="blue",lwd=3)

基于该技术,置信区间不再以预测为中心。

 

  • 增量法

实际上,使用表达式作为置信区间不会喜欢非中心区间。因此,一种替代方法是使用增量方法。我们可以使用一个程序包来计算该方法,而不是在理论上再次写一些东西,






> P1
$fit
1
155.4048


$se.fit
1
8.931232


$residual.scale
[1] 1

增量法使我们具有(渐近)正态性,因此一旦有了标准偏差,便可以得到置信区间。

 

通过两种不同的方法获得的数量在这里非常接近



> exp(P2$fit-1.96*P2$se.fit)
1
138.8495
> P1$fit-1.96*P1$se.fit
1
137.8996
> exp(P2$fit+1.96*P2$se.fit)
1
173.9341
> P1$fit+1.96*P1$se.fit
1
172.9101
  • bootstrap技术


第三种方法是使用bootstrap技术基于渐近正态性(仅50个观测值)得出这些结果。我们的想法是从数据集中取样,并对这些新样本进行log-Poisson回归,并重复很多次数,

 

相关文章
|
2月前
|
数据可视化
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码2
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
2月前
|
数据可视化 数据挖掘
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码1
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
2月前
|
前端开发 数据可视化
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化
|
2月前
|
机器学习/深度学习 数据可视化
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
|
2月前
|
前端开发 数据可视化 算法
r语言Bootstrap自助法重采样构建统计量T抽样分布近似值可视化|代码分享
r语言Bootstrap自助法重采样构建统计量T抽样分布近似值可视化|代码分享
|
2月前
|
机器学习/深度学习 数据可视化 算法
R语言拟合改进的稀疏广义加性模型(RGAM)预测、交叉验证、可视化
R语言拟合改进的稀疏广义加性模型(RGAM)预测、交叉验证、可视化
|
2月前
|
机器学习/深度学习 数据可视化
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(下)
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享
|
2月前
|
机器学习/深度学习
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(上)
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享
|
2月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
2月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为

热门文章

最新文章