yolo-world 源码解析(一)(1)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: yolo-world 源码解析(一)

.\YOLO-World\configs\deploy\detection_onnxruntime-fp16_dynamic.py

# 设置基础路径为指定的配置文件路径
_base_ = (
    '../../third_party/mmdeploy/configs/mmdet/detection/'
    'detection_onnxruntime-fp16_dynamic.py')
# 定义代码库配置,包括模型类型、任务类型、后处理参数等
codebase_config = dict(
    type='mmyolo',
    task='ObjectDetection',
    model_type='end2end',
    post_processing=dict(
        score_threshold=0.1,
        confidence_threshold=0.005,
        iou_threshold=0.3,
        max_output_boxes_per_class=100,
        pre_top_k=1000,
        keep_top_k=100,
        background_label_id=-1),
    module=['mmyolo.deploy'])
# 定义后端配置,使用onnxruntime作为后端
backend_config = dict(
    type='onnxruntime')

.\YOLO-World\configs\deploy\detection_onnxruntime-int8_dynamic.py

# 设置基础路径为指定的配置文件路径
_base_ = (
    '../../third_party/mmdeploy/configs/mmdet/detection/'
    'detection_onnxruntime-fp16_dynamic.py')
# 定义后端配置,设置精度为int8
backend_config = dict(
    precision='int8')
# 定义代码库配置,包括模型类型、任务类型、后处理参数等
codebase_config = dict(
    type='mmyolo',
    task='ObjectDetection',
    model_type='end2end',
    post_processing=dict(
        score_threshold=0.1,
        confidence_threshold=0.005,
        iou_threshold=0.3,
        max_output_boxes_per_class=100,
        pre_top_k=1000,
        keep_top_k=100,
        background_label_id=-1),
    module=['mmyolo.deploy'])
# 重新定义后端配置,设置类型为onnxruntime
backend_config = dict(
    type='onnxruntime')

.\YOLO-World\configs\deploy\detection_onnxruntime_static.py

# 设置基础路径为指定的配置文件路径
_base_ = (
    '../../third_party/mmyolo/configs/deploy/'
    'detection_onnxruntime_static.py')
# 定义代码库配置,包括类型、任务、模型类型和后处理参数
codebase_config = dict(
    type='mmyolo',
    task='ObjectDetection',
    model_type='end2end',
    post_processing=dict(
        score_threshold=0.25,
        confidence_threshold=0.005,
        iou_threshold=0.65,
        max_output_boxes_per_class=200,
        pre_top_k=1000,
        keep_top_k=100,
        background_label_id=-1),
    module=['mmyolo.deploy'])
# 定义后端配置,类型为onnxruntime
backend_config = dict(
    type='onnxruntime')

.\YOLO-World\configs\deploy\detection_tensorrt-fp16_static-640x640.py

_base_ = (
    '../../third_party/mmyolo/configs/deploy/'
    'detection_tensorrt-fp16_static-640x640.py')
# 设置基础配置文件路径
onnx_config = dict(
    type='onnx',
    export_params=True,
    keep_initializers_as_inputs=False,
    opset_version=11,
    save_file='end2end.onnx',
    input_names=['input'],
    output_names=['dets', 'labels'],
    input_shape=(640, 640),
    optimize=True)
# 设置 ONNX 配置参数,包括类型、是否导出参数、是否保留初始化器作为输入、操作集版本、保存文件名、输入输出名称、输入形状、是否优化
backend_config = dict(
    type='tensorrt',
    common_config=dict(fp16_mode=True, max_workspace_size=1 << 34),
    model_inputs=[
        dict(
            input_shapes=dict(
                input=dict(
                    min_shape=[1, 3, 640, 640],
                    opt_shape=[1, 3, 640, 640],
                    max_shape=[1, 3, 640, 640])))
    ])
# 设置后端配置参数,包括类型、通用配置、模型输入
use_efficientnms = False  # whether to replace TRTBatchedNMS plugin with EfficientNMS plugin # noqa E501
# 是否使用 EfficientNMS 插件替换 TRTBatchedNMS 插件
codebase_config = dict(
    type='mmyolo',
    task='ObjectDetection',
    model_type='end2end',
    post_processing=dict(
        score_threshold=0.25,
        confidence_threshold=0.005,
        iou_threshold=0.65,
        max_output_boxes_per_class=100,
        pre_top_k=1,
        keep_top_k=1,
        background_label_id=-1),
    module=['mmyolo.deploy'])
# 设置代码库配置参数,包括类型、任务、模型类型、后处理参数、模块

.\YOLO-World\configs\deploy\detection_tensorrt-int8_static-640x640.py

_base_ = [
    '../../third_party/mmdeploy/configs/mmdet/_base_/base_static.py',  # 定义基础配置文件路径
    '../../third_party/mmdeploy/configs/_base_/backends/tensorrt-int8.py']  # 定义后端配置文件路径
onnx_config = dict(input_shape=(640, 640))  # 定义输入形状配置
backend_config = dict(  # 定义后端配置
    common_config=dict(max_workspace_size=1 << 30),  # 定义通用配置,设置最大工作空间大小
    model_inputs=[  # 定义模型输入配置
        dict(  # 第一个模型输入配置
            input_shapes=dict(  # 定义输入形状
                input=dict(  # 输入名称为input
                    min_shape=[1, 3, 640, 640],  # 最小形状
                    opt_shape=[1, 3, 640, 640],  # 最佳形状
                    max_shape=[1, 3, 640, 640])))  # 最大形状
    ])
codebase_config = dict(  # 定义代码库配置
    type='mmyolo',  # 模型类型为mmyolo
    task='ObjectDetection',  # 任务为目标检测
    model_type='end2end',  # 模型类型为端到端
    post_processing=dict(  # 后处理配置
        score_threshold=0.1,  # 分数阈值
        confidence_threshold=0.005,  # 置信度阈值
        iou_threshold=0.3,  # IoU阈值
        max_output_boxes_per_class=100,  # 每类最大输出框数
        pre_top_k=1000,  # 预选框数
        keep_top_k=100,  # 保留框数
        background_label_id=-1),  # 背景标签ID
    module=['mmyolo.deploy'])  # 模块为mmyolo.deploy

.\YOLO-World\configs\finetune_coco\yolo_world_l_dual_vlpan_2e-4_80e_8gpus_finetune_coco.py

_base_ = (
    '../../third_party/mmyolo/configs/yolov8/'
    'yolov8_l_syncbn_fast_8xb16-500e_coco.py')
# 定义自定义的导入模块和设置是否允许导入失败
custom_imports = dict(
    imports=['yolo_world'],
    allow_failed_imports=False)
# 超参数设置
num_classes = 80
num_training_classes = 80
max_epochs = 80  # 最大训练轮数
close_mosaic_epochs = 10
save_epoch_intervals = 5
text_channels = 512
neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
base_lr = 2e-4
weight_decay = 0.05
train_batch_size_per_gpu = 16
load_from='pretrained_models/yolo_world_l_clip_base_dual_vlpan_2e-3adamw_32xb16_100e_o365_goldg_train_pretrained-0e566235.pth'
persistent_workers = False
# 模型设置
model = dict(
    type='YOLOWorldDetector',
    mm_neck=True,
    num_train_classes=num_training_classes,
    num_test_classes=num_classes,
    data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
    backbone=dict(
        _delete_=True,
        type='MultiModalYOLOBackbone',
        image_model={{_base_.model.backbone}},
        text_model=dict(
            type='HuggingCLIPLanguageBackbone',
            model_name='openai/clip-vit-base-patch32',
            frozen_modules=['all'])),
    neck=dict(type='YOLOWorldDualPAFPN',
              guide_channels=text_channels,
              embed_channels=neck_embed_channels,
              num_heads=neck_num_heads,
              block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
              text_enhancder=dict(type='ImagePoolingAttentionModule',
                                  embed_channels=256,
                                  num_heads=8)),
    bbox_head=dict(type='YOLOWorldHead',
                   head_module=dict(type='YOLOWorldHeadModule',
                                    embed_dims=text_channels,
                                    num_classes=num_training_classes)),
    train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
# 数据集设置
text_transform = [
    # 定义一个字典,包含参数 type、num_neg_samples、max_num_samples、padding_to_max 和 padding_value
    dict(type='RandomLoadText',
         num_neg_samples=(num_classes, num_classes),
         max_num_samples=num_training_classes,
         padding_to_max=True,
         padding_value=''),
    # 定义一个字典,包含参数 type 和 meta_keys
    dict(type='mmdet.PackDetInputs',
         meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
                    'flip_direction', 'texts'))
# 定义一个包含多个元素的列表,每个元素是一个字典,用于进行仿射变换
mosaic_affine_transform = [
    dict(
        type='MultiModalMosaic',
        img_scale=_base_.img_scale,
        pad_val=114.0,
        pre_transform=_base_.pre_transform),
    dict(
        type='YOLOv5RandomAffine',
        max_rotate_degree=0.0,
        max_shear_degree=0.0,
        max_aspect_ratio=100.,
        scaling_ratio_range=(1 - _base_.affine_scale,
                             1 + _base_.affine_scale),
        # img_scale is (width, height)
        border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
        border_val=(114, 114, 114))
]
# 定义训练数据处理流程的列表
train_pipeline = [
    *_base_.pre_transform,
    *mosaic_affine_transform,
    dict(
        type='YOLOv5MultiModalMixUp',
        prob=_base_.mixup_prob,
        pre_transform=[*_base_.pre_transform,
                       *mosaic_affine_transform]),
    *_base_.last_transform[:-1],
    *text_transform
]
# 定义第二阶段训练数据处理流程的列表
train_pipeline_stage2 = [
    *_base_.train_pipeline_stage2[:-1],
    *text_transform
]
# 定义 COCO 训练数据集的配置字典
coco_train_dataset = dict(
    _delete_=True,
    type='MultiModalDataset',
    dataset=dict(
        type='YOLOv5CocoDataset',
        data_root='data/coco',
        ann_file='annotations/instances_train2017.json',
        data_prefix=dict(img='train2017/'),
        filter_cfg=dict(filter_empty_gt=False, min_size=32)),
    class_text_path='data/texts/coco_class_texts.json',
    pipeline=train_pipeline)
# 定义训练数据加载器的配置字典
train_dataloader = dict(
    persistent_workers=persistent_workers,
    batch_size=train_batch_size_per_gpu,
    collate_fn=dict(type='yolow_collate'),
    dataset=coco_train_dataset)
# 定义测试数据处理流程的列表
test_pipeline = [
    *_base_.test_pipeline[:-1],
    dict(type='LoadText'),
    dict(
        type='mmdet.PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor', 'pad_param', 'texts'))
]
# 定义 COCO 验证数据集的配置字典
coco_val_dataset = dict(
    _delete_=True,
    type='MultiModalDataset',
    # 定义数据集参数,指定数据集类型为YOLOv5CocoDataset
    dataset=dict(
        type='YOLOv5CocoDataset',
        # 数据集根目录
        data_root='data/coco',
        # 标注文件路径
        ann_file='annotations/instances_val2017.json',
        # 数据前缀,包含图片路径
        data_prefix=dict(img='val2017/'),
        # 过滤配置,设置不过滤空的ground truth,最小尺寸为32
        filter_cfg=dict(filter_empty_gt=False, min_size=32)),
    # 类别文本路径
    class_text_path='data/texts/coco_class_texts.json',
    # 测试数据处理管道
    pipeline=test_pipeline)
# 创建验证数据加载器,使用 COCO 验证数据集
val_dataloader = dict(dataset=coco_val_dataset)
# 将验证数据加载器赋值给测试数据加载器
test_dataloader = val_dataloader
# 训练设置
# 默认钩子函数设置
default_hooks = dict(
    param_scheduler=dict(
        scheduler_type='linear',
        lr_factor=0.01,
        max_epochs=max_epochs),
    checkpoint=dict(
        max_keep_ckpts=-1,
        save_best=None,
        interval=save_epoch_intervals))
# 自定义钩子函数设置
custom_hooks = [
    dict(
        type='EMAHook',
        ema_type='ExpMomentumEMA',
        momentum=0.0001,
        update_buffers=True,
        strict_load=False,
        priority=49),
    dict(
        type='mmdet.PipelineSwitchHook',
        switch_epoch=max_epochs - close_mosaic_epochs,
        switch_pipeline=train_pipeline_stage2)
]
# 训练配置设置
train_cfg = dict(
    max_epochs=max_epochs,
    val_interval=5,
    dynamic_intervals=[((max_epochs - close_mosaic_epochs),
                        _base_.val_interval_stage2)])
# 优化器包装器设置
optim_wrapper = dict(
    optimizer=dict(
        _delete_=True,
        type='AdamW',
        lr=base_lr,
        weight_decay=weight_decay,
        batch_size_per_gpu=train_batch_size_per_gpu),
    paramwise_cfg=dict(
        bias_decay_mult=0.0,
        norm_decay_mult=0.0,
        custom_keys={'backbone.text_model': dict(lr_mult=0.01),
                     'logit_scale': dict(weight_decay=0.0)}),
    constructor='YOLOWv5OptimizerConstructor')
# 评估设置
# 验证评估器设置
val_evaluator = dict(
    _delete_=True,
    type='mmdet.CocoMetric',
    proposal_nums=(100, 1, 10),
    ann_file='data/coco/annotations/instances_val2017.json',
    metric='bbox')

yolo-world 源码解析(一)(2)https://developer.aliyun.com/article/1483828


相关文章
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
77 2
|
3天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
3天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
3天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
27天前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
54 12
|
23天前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
4天前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
1月前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
1月前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
58 3
|
2月前
|
存储
让星星⭐月亮告诉你,HashMap的put方法源码解析及其中两种会触发扩容的场景(足够详尽,有问题欢迎指正~)
`HashMap`的`put`方法通过调用`putVal`实现,主要涉及两个场景下的扩容操作:1. 初始化时,链表数组的初始容量设为16,阈值设为12;2. 当存储的元素个数超过阈值时,链表数组的容量和阈值均翻倍。`putVal`方法处理键值对的插入,包括链表和红黑树的转换,确保高效的数据存取。
65 5

推荐镜像

更多