yolo-world 源码解析(一)(1)

简介: yolo-world 源码解析(一)

.\YOLO-World\configs\deploy\detection_onnxruntime-fp16_dynamic.py

# 设置基础路径为指定的配置文件路径
_base_ = (
    '../../third_party/mmdeploy/configs/mmdet/detection/'
    'detection_onnxruntime-fp16_dynamic.py')
# 定义代码库配置,包括模型类型、任务类型、后处理参数等
codebase_config = dict(
    type='mmyolo',
    task='ObjectDetection',
    model_type='end2end',
    post_processing=dict(
        score_threshold=0.1,
        confidence_threshold=0.005,
        iou_threshold=0.3,
        max_output_boxes_per_class=100,
        pre_top_k=1000,
        keep_top_k=100,
        background_label_id=-1),
    module=['mmyolo.deploy'])
# 定义后端配置,使用onnxruntime作为后端
backend_config = dict(
    type='onnxruntime')

.\YOLO-World\configs\deploy\detection_onnxruntime-int8_dynamic.py

# 设置基础路径为指定的配置文件路径
_base_ = (
    '../../third_party/mmdeploy/configs/mmdet/detection/'
    'detection_onnxruntime-fp16_dynamic.py')
# 定义后端配置,设置精度为int8
backend_config = dict(
    precision='int8')
# 定义代码库配置,包括模型类型、任务类型、后处理参数等
codebase_config = dict(
    type='mmyolo',
    task='ObjectDetection',
    model_type='end2end',
    post_processing=dict(
        score_threshold=0.1,
        confidence_threshold=0.005,
        iou_threshold=0.3,
        max_output_boxes_per_class=100,
        pre_top_k=1000,
        keep_top_k=100,
        background_label_id=-1),
    module=['mmyolo.deploy'])
# 重新定义后端配置,设置类型为onnxruntime
backend_config = dict(
    type='onnxruntime')

.\YOLO-World\configs\deploy\detection_onnxruntime_static.py

# 设置基础路径为指定的配置文件路径
_base_ = (
    '../../third_party/mmyolo/configs/deploy/'
    'detection_onnxruntime_static.py')
# 定义代码库配置,包括类型、任务、模型类型和后处理参数
codebase_config = dict(
    type='mmyolo',
    task='ObjectDetection',
    model_type='end2end',
    post_processing=dict(
        score_threshold=0.25,
        confidence_threshold=0.005,
        iou_threshold=0.65,
        max_output_boxes_per_class=200,
        pre_top_k=1000,
        keep_top_k=100,
        background_label_id=-1),
    module=['mmyolo.deploy'])
# 定义后端配置,类型为onnxruntime
backend_config = dict(
    type='onnxruntime')

.\YOLO-World\configs\deploy\detection_tensorrt-fp16_static-640x640.py

_base_ = (
    '../../third_party/mmyolo/configs/deploy/'
    'detection_tensorrt-fp16_static-640x640.py')
# 设置基础配置文件路径
onnx_config = dict(
    type='onnx',
    export_params=True,
    keep_initializers_as_inputs=False,
    opset_version=11,
    save_file='end2end.onnx',
    input_names=['input'],
    output_names=['dets', 'labels'],
    input_shape=(640, 640),
    optimize=True)
# 设置 ONNX 配置参数,包括类型、是否导出参数、是否保留初始化器作为输入、操作集版本、保存文件名、输入输出名称、输入形状、是否优化
backend_config = dict(
    type='tensorrt',
    common_config=dict(fp16_mode=True, max_workspace_size=1 << 34),
    model_inputs=[
        dict(
            input_shapes=dict(
                input=dict(
                    min_shape=[1, 3, 640, 640],
                    opt_shape=[1, 3, 640, 640],
                    max_shape=[1, 3, 640, 640])))
    ])
# 设置后端配置参数,包括类型、通用配置、模型输入
use_efficientnms = False  # whether to replace TRTBatchedNMS plugin with EfficientNMS plugin # noqa E501
# 是否使用 EfficientNMS 插件替换 TRTBatchedNMS 插件
codebase_config = dict(
    type='mmyolo',
    task='ObjectDetection',
    model_type='end2end',
    post_processing=dict(
        score_threshold=0.25,
        confidence_threshold=0.005,
        iou_threshold=0.65,
        max_output_boxes_per_class=100,
        pre_top_k=1,
        keep_top_k=1,
        background_label_id=-1),
    module=['mmyolo.deploy'])
# 设置代码库配置参数,包括类型、任务、模型类型、后处理参数、模块

.\YOLO-World\configs\deploy\detection_tensorrt-int8_static-640x640.py

_base_ = [
    '../../third_party/mmdeploy/configs/mmdet/_base_/base_static.py',  # 定义基础配置文件路径
    '../../third_party/mmdeploy/configs/_base_/backends/tensorrt-int8.py']  # 定义后端配置文件路径
onnx_config = dict(input_shape=(640, 640))  # 定义输入形状配置
backend_config = dict(  # 定义后端配置
    common_config=dict(max_workspace_size=1 << 30),  # 定义通用配置,设置最大工作空间大小
    model_inputs=[  # 定义模型输入配置
        dict(  # 第一个模型输入配置
            input_shapes=dict(  # 定义输入形状
                input=dict(  # 输入名称为input
                    min_shape=[1, 3, 640, 640],  # 最小形状
                    opt_shape=[1, 3, 640, 640],  # 最佳形状
                    max_shape=[1, 3, 640, 640])))  # 最大形状
    ])
codebase_config = dict(  # 定义代码库配置
    type='mmyolo',  # 模型类型为mmyolo
    task='ObjectDetection',  # 任务为目标检测
    model_type='end2end',  # 模型类型为端到端
    post_processing=dict(  # 后处理配置
        score_threshold=0.1,  # 分数阈值
        confidence_threshold=0.005,  # 置信度阈值
        iou_threshold=0.3,  # IoU阈值
        max_output_boxes_per_class=100,  # 每类最大输出框数
        pre_top_k=1000,  # 预选框数
        keep_top_k=100,  # 保留框数
        background_label_id=-1),  # 背景标签ID
    module=['mmyolo.deploy'])  # 模块为mmyolo.deploy

.\YOLO-World\configs\finetune_coco\yolo_world_l_dual_vlpan_2e-4_80e_8gpus_finetune_coco.py

_base_ = (
    '../../third_party/mmyolo/configs/yolov8/'
    'yolov8_l_syncbn_fast_8xb16-500e_coco.py')
# 定义自定义的导入模块和设置是否允许导入失败
custom_imports = dict(
    imports=['yolo_world'],
    allow_failed_imports=False)
# 超参数设置
num_classes = 80
num_training_classes = 80
max_epochs = 80  # 最大训练轮数
close_mosaic_epochs = 10
save_epoch_intervals = 5
text_channels = 512
neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
base_lr = 2e-4
weight_decay = 0.05
train_batch_size_per_gpu = 16
load_from='pretrained_models/yolo_world_l_clip_base_dual_vlpan_2e-3adamw_32xb16_100e_o365_goldg_train_pretrained-0e566235.pth'
persistent_workers = False
# 模型设置
model = dict(
    type='YOLOWorldDetector',
    mm_neck=True,
    num_train_classes=num_training_classes,
    num_test_classes=num_classes,
    data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
    backbone=dict(
        _delete_=True,
        type='MultiModalYOLOBackbone',
        image_model={{_base_.model.backbone}},
        text_model=dict(
            type='HuggingCLIPLanguageBackbone',
            model_name='openai/clip-vit-base-patch32',
            frozen_modules=['all'])),
    neck=dict(type='YOLOWorldDualPAFPN',
              guide_channels=text_channels,
              embed_channels=neck_embed_channels,
              num_heads=neck_num_heads,
              block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv'),
              text_enhancder=dict(type='ImagePoolingAttentionModule',
                                  embed_channels=256,
                                  num_heads=8)),
    bbox_head=dict(type='YOLOWorldHead',
                   head_module=dict(type='YOLOWorldHeadModule',
                                    embed_dims=text_channels,
                                    num_classes=num_training_classes)),
    train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
# 数据集设置
text_transform = [
    # 定义一个字典,包含参数 type、num_neg_samples、max_num_samples、padding_to_max 和 padding_value
    dict(type='RandomLoadText',
         num_neg_samples=(num_classes, num_classes),
         max_num_samples=num_training_classes,
         padding_to_max=True,
         padding_value=''),
    # 定义一个字典,包含参数 type 和 meta_keys
    dict(type='mmdet.PackDetInputs',
         meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
                    'flip_direction', 'texts'))
# 定义一个包含多个元素的列表,每个元素是一个字典,用于进行仿射变换
mosaic_affine_transform = [
    dict(
        type='MultiModalMosaic',
        img_scale=_base_.img_scale,
        pad_val=114.0,
        pre_transform=_base_.pre_transform),
    dict(
        type='YOLOv5RandomAffine',
        max_rotate_degree=0.0,
        max_shear_degree=0.0,
        max_aspect_ratio=100.,
        scaling_ratio_range=(1 - _base_.affine_scale,
                             1 + _base_.affine_scale),
        # img_scale is (width, height)
        border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
        border_val=(114, 114, 114))
]
# 定义训练数据处理流程的列表
train_pipeline = [
    *_base_.pre_transform,
    *mosaic_affine_transform,
    dict(
        type='YOLOv5MultiModalMixUp',
        prob=_base_.mixup_prob,
        pre_transform=[*_base_.pre_transform,
                       *mosaic_affine_transform]),
    *_base_.last_transform[:-1],
    *text_transform
]
# 定义第二阶段训练数据处理流程的列表
train_pipeline_stage2 = [
    *_base_.train_pipeline_stage2[:-1],
    *text_transform
]
# 定义 COCO 训练数据集的配置字典
coco_train_dataset = dict(
    _delete_=True,
    type='MultiModalDataset',
    dataset=dict(
        type='YOLOv5CocoDataset',
        data_root='data/coco',
        ann_file='annotations/instances_train2017.json',
        data_prefix=dict(img='train2017/'),
        filter_cfg=dict(filter_empty_gt=False, min_size=32)),
    class_text_path='data/texts/coco_class_texts.json',
    pipeline=train_pipeline)
# 定义训练数据加载器的配置字典
train_dataloader = dict(
    persistent_workers=persistent_workers,
    batch_size=train_batch_size_per_gpu,
    collate_fn=dict(type='yolow_collate'),
    dataset=coco_train_dataset)
# 定义测试数据处理流程的列表
test_pipeline = [
    *_base_.test_pipeline[:-1],
    dict(type='LoadText'),
    dict(
        type='mmdet.PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor', 'pad_param', 'texts'))
]
# 定义 COCO 验证数据集的配置字典
coco_val_dataset = dict(
    _delete_=True,
    type='MultiModalDataset',
    # 定义数据集参数,指定数据集类型为YOLOv5CocoDataset
    dataset=dict(
        type='YOLOv5CocoDataset',
        # 数据集根目录
        data_root='data/coco',
        # 标注文件路径
        ann_file='annotations/instances_val2017.json',
        # 数据前缀,包含图片路径
        data_prefix=dict(img='val2017/'),
        # 过滤配置,设置不过滤空的ground truth,最小尺寸为32
        filter_cfg=dict(filter_empty_gt=False, min_size=32)),
    # 类别文本路径
    class_text_path='data/texts/coco_class_texts.json',
    # 测试数据处理管道
    pipeline=test_pipeline)
# 创建验证数据加载器,使用 COCO 验证数据集
val_dataloader = dict(dataset=coco_val_dataset)
# 将验证数据加载器赋值给测试数据加载器
test_dataloader = val_dataloader
# 训练设置
# 默认钩子函数设置
default_hooks = dict(
    param_scheduler=dict(
        scheduler_type='linear',
        lr_factor=0.01,
        max_epochs=max_epochs),
    checkpoint=dict(
        max_keep_ckpts=-1,
        save_best=None,
        interval=save_epoch_intervals))
# 自定义钩子函数设置
custom_hooks = [
    dict(
        type='EMAHook',
        ema_type='ExpMomentumEMA',
        momentum=0.0001,
        update_buffers=True,
        strict_load=False,
        priority=49),
    dict(
        type='mmdet.PipelineSwitchHook',
        switch_epoch=max_epochs - close_mosaic_epochs,
        switch_pipeline=train_pipeline_stage2)
]
# 训练配置设置
train_cfg = dict(
    max_epochs=max_epochs,
    val_interval=5,
    dynamic_intervals=[((max_epochs - close_mosaic_epochs),
                        _base_.val_interval_stage2)])
# 优化器包装器设置
optim_wrapper = dict(
    optimizer=dict(
        _delete_=True,
        type='AdamW',
        lr=base_lr,
        weight_decay=weight_decay,
        batch_size_per_gpu=train_batch_size_per_gpu),
    paramwise_cfg=dict(
        bias_decay_mult=0.0,
        norm_decay_mult=0.0,
        custom_keys={'backbone.text_model': dict(lr_mult=0.01),
                     'logit_scale': dict(weight_decay=0.0)}),
    constructor='YOLOWv5OptimizerConstructor')
# 评估设置
# 验证评估器设置
val_evaluator = dict(
    _delete_=True,
    type='mmdet.CocoMetric',
    proposal_nums=(100, 1, 10),
    ann_file='data/coco/annotations/instances_val2017.json',
    metric='bbox')

yolo-world 源码解析(一)(2)https://developer.aliyun.com/article/1483828


相关文章
|
7月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
658 29
|
7月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
191 4
|
7月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
7月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。
|
7月前
|
存储 前端开发 JavaScript
在线教育网课系统源码开发指南:功能设计与技术实现深度解析
在线教育网课系统是近年来发展迅猛的教育形式的核心载体,具备用户管理、课程管理、教学互动、学习评估等功能。本文从功能和技术两方面解析其源码开发,涵盖前端(HTML5、CSS3、JavaScript等)、后端(Java、Python等)、流媒体及云计算技术,并强调安全性、稳定性和用户体验的重要性。
|
7月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
10月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
10月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
8月前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
1387 0
|
9月前
|
自然语言处理 数据处理 索引
mindspeed-llm源码解析(一)preprocess_data
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。
255 0

推荐镜像

更多
  • DNS