weka文本挖掘分析垃圾邮件分类模型

简介: weka文本挖掘分析垃圾邮件分类模型

业务背景


电子邮件的应用变的十分广泛,它给人们的生活带来了极大的方便,然而,作为其发展的副产品——垃圾邮件,却给广大用户、网络管理员和ISP(Internet服务提供者)带来了大量的麻烦。垃圾邮件问题日益严重,受到研究人员的广泛关注。垃圾邮件通常是指未经用户许可,但却被强行塞入用户邮箱的电子邮件。对于采用群发等技术的垃圾邮件,必须借助一定的技术手段进行反垃圾邮件工作。目前,反垃圾邮件技术主要包括:垃圾邮件过滤技术、邮件服务器的安全管理以及对简单邮件通信协议(SMTP)的改进研究等。


WEKA文本分词预处理


首先对于训练集文件夹中的两类邮件文档进行分析,可从不同角度自动化分析两类文件特征,编写算法,构建分类模型。

首先设置工作目录,并且读取分类后的文本文件

可以看到垃圾邮件和非垃圾邮件的频数直方图


然后对得到的原始语料进行分词处理 得到词频矩阵文件


得到各个词频的分类直方图


得到词频矩阵后 对数据进行分类器的建模

2. 对corpus中的attribute进行分析,找出对于分类有贡献的attribute(即那些词只出现在positive中,那些词只出现在negative中,哪些词在两个类别里都出现)






3. 找出区分positive和negative的分类规则(即哪些词在一起出现的时候会导致分类器判断的结果为positive,哪些词在一起出现的时候会导致分类器判断的结果为negative)



从结果可以看出cell efficiengcy however breast rates 和cell这些词对最后的分类结果有较大的影响 如有however的一般为负面词 。


WEKA文本分词结果比较


下面得到每个分类器的准确度和混淆矩阵:


NaiveBayes


Logistic


J48


RandomForest


SVM


OneR


结语

基于判别方法的垃圾邮件过滤在现代研究中引起比较少的关注 ,结果很清楚地表明,基于随机森林、SVM模型的分类方法相对于传统的方法,在垃圾邮件的过滤方面,可以有效地提高正确率和准确率。


目录
打赏
0
0
0
0
111
分享
相关文章
【Python机器学习】分类算法任务、分类模型评价指标详解(图文解释)
【Python机器学习】分类算法任务、分类模型评价指标详解(图文解释)
261 0
基于B站视频评论的文本分析,采用包括文本聚类分析、LDA主题分析、网络语义分析
本文通过Python爬虫技术采集B站视频评论数据,利用LDA主题分析、聚类分析和语义网络分析等方法,对评论进行深入的文本分析,挖掘用户评论的主题、情感倾向和语义结构,旨在为商业决策提供支持,优化内容创作和用户满意度。
871 2
基于B站视频评论的文本分析,采用包括文本聚类分析、LDA主题分析、网络语义分析
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
729 0
基于python数据挖掘在淘宝评价方面的应用与分析,技术包括kmeans聚类及情感分析、LDA主题分析
本文探讨了基于Python数据挖掘技术在淘宝评价分析中的应用,涵盖了数据采集、清洗、预处理、评论词频分析、情感分析、聚类分析以及LDA主题建模和可视化,旨在揭示淘宝客户评价中的潜在模式和情感倾向,为商家和消费者提供决策支持。
173 0
【数据分享】维基百科Wiki负面有害评论(网络暴力)文本数据多标签分类挖掘可视化
【数据分享】维基百科Wiki负面有害评论(网络暴力)文本数据多标签分类挖掘可视化
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等