python用线性回归预测股票价格

简介: python用线性回归预测股票价格

线性回归在整个财务中广泛应用于众多应用程序中。在之前的教程中,我们使用普通最小二乘法(OLS)计算了公司的beta与相对索引的比较。现在,我们将使用线性回归来估计股票价格。

线性回归是一种用于模拟因变量(y)和自变量(x)之间关系的方法。通过简单的线性回归,只有一个自变量x。可能有许多独立变量属于多元线性回归的范畴。在这种情况下,我们只有一个自变量即日期。对于第一个日期上升到日期向量长度的整数,该日期将由1开始的整数表示,该日期可以根据时间序列数据而变化。当然,我们的因变量将是股票的价格。为了理解线性回归,您必须了解您可能在学校早期学到的相当基本的等式。

y = a + bx

  • Y =预测值或因变量
  • b =斜率
  • x =系数或自变量
  • a = 截距

从本质上讲,这将构成我们对数据的最佳拟合。在OLS过程中通过数据集绘制了大量线条。该过程的目标是找到最佳拟合线,最小化平方误差和(SSE)与股票价格(y)的实际值以及我们在数据集中所有点的预测股票价格。这由下图表示。对于绘制的每条线,数据集中的每个点与模型输出的相应预测值之间存在差异。将这些差异中的每一个加起来并平方以产生平方和。从列表中,我们采用最小值导致我们的最佳匹配线。考虑下图:

第一部分:获取数据:



from matplotlib import style


from sklearn.linear_model import LinearRegression


from sklearn.model_selection import train_test_split


import quandl


import datetime


style.use('ggplot')


#Dates


start_date = datetime.date(2017,1,3)


t_date=start_date, end_date=end_date, collapse="daily")


df = df.reset_index()


prices = np.reshape(prices, (len(prices), 1))

第二部分:创建一个回归对象:




', linewidth=3, label = 'Predicted Price') #plotting the line made by linear regression


plt.title('Linear Regression | Time vs. Price')


plt.legend()


predicted_price =regressor.predict(date)

输出:

预测日期输入价格:

创建训练/测试集



et


xtrain, x , ytrain)


#Train


plt.title('Linear Regression | Time vs. Price')


#Test Set Graph


plt.scatter(xtest, ytest, color='yellow', label= 'Actual Price') #plotting the initial datapoints


plt.plot(xtest, regressor.predict(xtest), color='blue', linewidth=3, label = 'Predicted Price') #plotting


plt.show()

输出:

测试集:

 

相关文章
|
2月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
1191 1
|
5月前
|
数据采集 Web App开发 数据可视化
Python爬取闲鱼价格趋势并可视化分析
Python爬取闲鱼价格趋势并可视化分析
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
646 3
|
7月前
|
供应链 API 开发者
1688 商品数据接口终极指南:Python 开发者如何高效获取标题 / 价格 / 销量数据(附调试工具推荐)
1688商品列表API是阿里巴巴开放平台提供的服务,允许开发者通过API获取1688平台的商品信息(标题、价格、销量等)。适用于电商选品、比价工具、供应链管理等场景。使用时需构造请求URL,携带参数(如q、start_price、end_price等),发送HTTP请求并解析返回的JSON/XML数据。示例代码展示了如何用Python调用该API获取商品列表。
390 18
|
10月前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
364 6
从零开始:用Python爬取网站的汽车品牌和价格数据
|
10月前
|
存储 数据采集 数据库
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
|
存储 数据采集 数据库
用 Python 爬取淘宝商品价格信息时需要注意什么?
使用 Python 爬取淘宝商品价格信息时,需注意法律和道德规范,遵守法律法规和平台规定,避免非法用途。技术上,可选择 Selenium 和 Requests 库,处理反爬措施如 IP 限制、验证码识别和请求频率控制。解析页面数据时,确定数据位置并清洗格式。数据存储可选择 CSV、Excel、JSON 或数据库,定期更新并去重。还需进行错误处理和日志记录,确保爬虫稳定运行。
|
数据采集 Web App开发 iOS开发
如何利用 Python 的爬虫技术获取淘宝天猫商品的价格信息?
本文介绍了使用 Python 爬虫技术获取淘宝天猫商品价格信息的两种方法。方法一使用 Selenium 模拟浏览器操作,通过定位页面元素获取价格;方法二使用 Requests 和正则表达式直接请求页面内容并提取价格。每种方法都有详细步骤和代码示例,但需注意反爬措施和法律法规。
|
机器学习/深度学习 数据可视化 Python
使用最小二乘法进行线性回归(Python)
【10月更文挑战第28天】本文介绍了使用Python实现最小二乘法进行线性回归的步骤,包括数据准备、计算均值、计算斜率和截距、构建线性回归方程以及预测和可视化结果。通过示例代码展示了如何从创建数据点到最终绘制回归直线的完整过程。
436 2
|
数据采集 人工智能 自然语言处理
AI Agent 金融助理0-1 Tutorial 利用Python实时查询股票API的FinanceAgent框架构建股票(美股/A股/港股) AI Finance Agent
金融领域Finance AI Agents方面的工作,发现很多行业需求和用户输入的 query都是和查询股价/行情/指数/财报汇总/金融理财建议相关。如果需要准确的 金融实时数据就不能只依赖LLM 来生成了。常规的方案包括 RAG (包括调用API )再把对应数据和prompt 一起拼接送给大模型来做文本生成。稳定的一些商业机构的金融数据API基本都是收费的,如果是以科研和demo性质有一些开放爬虫API可以使用。这里主要介绍一下 FinanceAgent,github地址 https://github.com/AI-Hub-Admin/FinanceAgent

推荐镜像

更多