python用线性回归预测股票价格

简介: python用线性回归预测股票价格

线性回归在整个财务中广泛应用于众多应用程序中。在之前的教程中,我们使用普通最小二乘法(OLS)计算了公司的beta与相对索引的比较。现在,我们将使用线性回归来估计股票价格。

线性回归是一种用于模拟因变量(y)和自变量(x)之间关系的方法。通过简单的线性回归,只有一个自变量x。可能有许多独立变量属于多元线性回归的范畴。在这种情况下,我们只有一个自变量即日期。对于第一个日期上升到日期向量长度的整数,该日期将由1开始的整数表示,该日期可以根据时间序列数据而变化。当然,我们的因变量将是股票的价格。为了理解线性回归,您必须了解您可能在学校早期学到的相当基本的等式。

y = a + bx

  • Y =预测值或因变量
  • b =斜率
  • x =系数或自变量
  • a = 截距

从本质上讲,这将构成我们对数据的最佳拟合。在OLS过程中通过数据集绘制了大量线条。该过程的目标是找到最佳拟合线,最小化平方误差和(SSE)与股票价格(y)的实际值以及我们在数据集中所有点的预测股票价格。这由下图表示。对于绘制的每条线,数据集中的每个点与模型输出的相应预测值之间存在差异。将这些差异中的每一个加起来并平方以产生平方和。从列表中,我们采用最小值导致我们的最佳匹配线。考虑下图:

第一部分:获取数据:



from matplotlib import style


from sklearn.linear_model import LinearRegression


from sklearn.model_selection import train_test_split


import quandl


import datetime


style.use('ggplot')


#Dates


start_date = datetime.date(2017,1,3)


t_date=start_date, end_date=end_date, collapse="daily")


df = df.reset_index()


prices = np.reshape(prices, (len(prices), 1))

第二部分:创建一个回归对象:




', linewidth=3, label = 'Predicted Price') #plotting the line made by linear regression


plt.title('Linear Regression | Time vs. Price')


plt.legend()


predicted_price =regressor.predict(date)

输出:

预测日期输入价格:

创建训练/测试集



et


xtrain, x , ytrain)


#Train


plt.title('Linear Regression | Time vs. Price')


#Test Set Graph


plt.scatter(xtest, ytest, color='yellow', label= 'Actual Price') #plotting the initial datapoints


plt.plot(xtest, regressor.predict(xtest), color='blue', linewidth=3, label = 'Predicted Price') #plotting


plt.show()

输出:

测试集:

 

相关文章
|
9天前
|
机器学习/深度学习 数据可视化 安全
Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化(下)
Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化
|
9天前
|
机器学习/深度学习 数据可视化 Python
Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化(上)
Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化
|
6天前
|
数据采集 数据挖掘 Python
Python数据分析 | 线性回归
Python数据分析 | 线性回归
23 1
|
9天前
|
机器学习/深度学习 数据采集 算法
【Python机器学习专栏】使用机器学习预测股票价格
【4月更文挑战第30天】本文探讨了使用Python和机器学习预测股票价格的方法,包括数据收集(如开盘价、收盘价等)、预处理(缺失值填充、异常值处理、标准化)、特征选择(技术指标、基本面指标、市场情绪)和工程、模型选择(线性回归、SVM、神经网络等)、训练与调优。模型评估涉及准确率、召回率等指标,并强调实际应用中需考虑多种因素,未来研究可探索深度学习的应用及数据质量与安全。
|
9天前
|
机器学习/深度学习 算法 数据挖掘
【Python 机器学习专栏】Python 中的线性回归模型详解
【4月更文挑战第30天】本文介绍了Python中的线性回归模型,包括基本原理、实现步骤和应用。线性回归假设因变量与自变量间存在线性关系,通过建立数学模型进行预测。实现过程涉及数据准备、模型构建、参数估计、评估和预测。常用的Python库有Scikit-learn和Statsmodels。线性回归简单易懂,广泛应用,但对异常值敏感且假设线性关系。其扩展形式如多元线性、多项式回归和正则化方法能适应不同场景。理解并运用线性回归有助于数据分析和预测。
|
9天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python用线性回归和TensorFlow非线性概率神经网络不同激活函数分析可视化
Python用线性回归和TensorFlow非线性概率神经网络不同激活函数分析可视化
|
9天前
|
数据可视化 数据处理 索引
Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析
Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析
|
9天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化
Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化
|
9天前
|
机器学习/深度学习 数据采集 数据可视化
python用回归、arima、随机森林、GARCH模型分析国债期货波动性、收益率、价格预测
python用回归、arima、随机森林、GARCH模型分析国债期货波动性、收益率、价格预测
|
9天前
|
Python
python实现股票策略回测案例
此Python代码演示了一个简单的股票策略回测,使用yfinance库获取AAPL股票2020年至2022年的数据。它计算每日收益率,并基于前一日收益率决定买卖:正则买入,负则卖出。通过模拟交易更新现金和股票余额,最终计算总收益。请注意,此示例未涵盖交易费用、滑点、风险管理等实际交易因素。
28 0