R语言时间序列分析复杂的季节模式

简介: R语言时间序列分析复杂的季节模式

分析复杂的季节模式

 

当时间序列数据的频率高于季度或月度时,许多预测程序在分析季节性影响方面遇到了障碍。

澳大利亚蒙纳士大学的研究人员在美国统计协会杂志(JASA)上发表了一篇有趣的论文,以及一个R程序,以处理这种情况 - 可称为“复杂的季节性”。

我已经更新并修改了他们的一项计算 - 使用每周而不是每日的美国常规汽油价格数据 - 并发现整个事情非常有趣。

如果您查看图表下方图例中的颜色代码,则更容易阅读和理解。

我从FRED那里抓住了传统的每周美国汽油价格。在查看之前的数据后,我确定了2000年第一周的开始日期。然后,我在Hyndman R Forecast软件包中使用了tbats(),以便在开源矩阵编程语言R中使用。

然后,我建立了2012年第一周称为newGP的时间序列的结束日期,预测将tbats(。)应用于2000年的历史数据:1到2012:1其中第二个数字指的是从1到52的周数。请注意,需要进行一些数据清理工作,以便将天然气价格数据一致地划分为52周。我将“第53周”的平均值与最接近的一周(第二年的52或1)进行平均。

104周的预测显示在上图中的红色实线上。

这实际上看起来很有希望,好像它可能为美国运输机构编码一些有用的信息。

JASA论文的草稿可以PDF格式下载。它被称为具有复杂季节性模式的预测时间序列,使用指数平滑以及每日美国天然气价格,分析土耳其的日常电力需求和银行呼叫中心数据。

我只是分析天然气价格数据的一部分,因为我还没有接受每日数据。但是每周数据中由tbats(。)识别的季节性模式很有趣,如下所示。

每周频率可以让我们以一定的精度“进入”模式的摆动。从模型的样本外性能来看,这种“摆动”在某些情况下可能会更加突出并且非常重要。

适合于较高频率数据的Trignometric系列提取tbats 中的季节性模式其还具有其他高级特征,例如估计残差的ARMA(自回归移动平均)模型的能力。

相关文章
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
9月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
344 9
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
326 3
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
349 3
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为