R语言回归中的Hosmer-Lemeshow拟合优度检验

简介: R语言回归中的Hosmer-Lemeshow拟合优度检验

在依赖模型得出结论或预测未来结果之前,我们应尽可能检查我们假设的模型是否正确指定。也就是说,数据不会与模型所做的假设冲突。对于二元结果,逻辑回归是最流行的建模方法。在这篇文章中,我们将看一下 Hosmer-Lemeshow逻辑回归的拟合优度检验。


Hosmer-Lemeshow拟合优度检验

Hosmer-Lemeshow拟合优度检验是基于根据预测的概率或风险将样本分开。具体而言,基于估计的参数值,对于样本中的每个观察,基于每个观察的协变量值计算概率。


然后根据样本的预测概率将样本中的观察分成g组(我们回过头来选择g)。假设(通常如此)g = 10。然后第一组由具有最低10%预测概率的观察组成。第二组由预测概率次之小的样本的10%等组成。

在实践中,只要我们的一些模型协变量是连续的,每个观测将具有不同的预测概率,因此预测的概率将在我们形成的每个组中变化。为了计算我们预期的观察数量,Hosmer-Lemeshow测试取组中预测概率的平均值,并将其乘以组中的观察数。测试也执行相同的计算,然后计算Pearson拟合优度统计量


 

选择组的数量

就我所见,关于如何选择组数g的指导很少。Hosmer和Lemeshow的模拟结论是基于使用的,建议如果我们在模型中有10个协变量 。

直观地说,使用较小的g值可以减少检测错误规范的机会。

 

R

首先,我们将使用一个协变量x模拟逻辑回归模型中的一些数据,然后拟合正确的逻辑回归模型。


n < -  100
x < -  rnorm(n)
xb < -  x
pr < -  exp(xb)/(1 + exp(xb))
y < -  1 *(runif(n)<pr)
mod < -  glm(y~x,family = binomial)


接下来,我们将结果y和模型拟合概率传递给hoslem.test函数,选择g = 10组:


       Hosmer and Lemeshow goodness of fit (GOF) test

data:  mod$y, fitted(mod)
X-squared = 7.4866, df = 8, p-value = 0.4851


这给出p = 0.49,表明没有合适的不良证据。我们还可以从我们的hl对象中获得一个观察到的与预期的表:


pihat <- mod$fitted
pihatcat <- cut(pihat, brks=c(0,quantile(pi 1,0.9,0.1)),1),  els=FALSE)


为了帮助我们理解计算,现在让我们自己手动执行测试。首先,我们计算模型预测概率,然后根据预测概率的十分位数对观测值进行分类:



cbind(hl$observed,hl$expected)
               y0 y1    yhat0    yhat1
[0.0868,0.219]  8  2 8.259898 1.740102
(0.219,0.287]   7  3 7.485661 2.514339
(0.287,0.329]   7  3 6.968185 3.031815
(0.329,0.421]   8  2 6.194245 3.805755
(0.421,0.469]   5  5 5.510363 4.489637
(0.469,0.528]   4  6 4.983951 5.016049
(0.528,0.589]   5  5 4.521086 5.478914
(0.589,0.644]   2  8 3.833244 6.166756
(0.644,0.713]   6  4 3.285271 6.714729
(0.713,0.913]   1  9 1.958095 8.041905

接下来,我们循环通过组1到10,计算观察到的0和1的数量,并计算预期的0和1的数量。为了计算后者,我们找到每组中预测概率的均值,并将其乘以组大小,这里是10:


meanprobs <- array(0, dim=c(10,2))
expevents <- array(0, dim=c(10,2))
obsevents <- array(0, dim=c(10,2))

for (i in 1:10) {
  meanprobs[i,1] <- mean(pihat[pihatcat==i])
 
  obsevents[i,2] <- sum(1-y[pihatcat==i])
}

最后,我们可以通过表格的10x2单元格中的(观察到的预期)^ 2 /预期的总和来计算Hosmer-Lemeshow检验统计量:


[1] 7.486643


与hoslem.test函数的测试统计值一致。


改变组的数量
接下来,让我们看看测试的p值如何变化,因为我们选择g = 5,g = 6,直到g = 15。我们可以通过一个简单的for循环来完成:



for(i in 5:15){
  print(hoslem.test(mod $ y,fits(mod),g = i)$ p.value)
}
[1] 0.4683388
[1] 0.9216374
[1] 0.996425
[1] 0.9018581
[1] 0.933084
[1] 0.4851488
[1] 0.9374381
[1] 0.9717069
[1] 0.5115724
[1] 0.4085544
[1] 0.8686347

虽然p值有所改变,但它们都显然不重要,所以他们给出了类似的结论,没有证据表明不合适。因此,对于此数据集,选择不同的g值似乎不会影响实质性结论。


通过模拟检查Hosmer-Lemeshow测试

要完成,让我们进行一些模拟,以检查Hosmer-Lemeshow测试在重复样本中的表现。首先,我们将从先前使用的相同模型重复采样,拟合相同(正确)模型,并使用g = 10计算Hosmer-Lemeshow p值。我们将这样做1000次,并将测试p值存储在一个数组中:


pvalues < -  array(0,1000)

for(i in 1:1000){
  n < -  100
  x < -  rnorm(n)
   pr < -  exp(xb)/(1 + exp(xb))
   mod < -  glm(y~x,family = binomial)
 }

完成后,我们可以计算出p值小于0.05的比例。由于此处正确指定了模型,因此我们希望这种所谓的类型1错误率不大于5%:


[1] 0.04


因此,在1,000次模拟中,Hosmer-Lemeshow测试在4%的情况下给出了显着的p值,表明不合适。所以测试错误地表明在我们预期的5%限制内不合适 - 它似乎工作正常。

现在让我们改变模拟,以便我们适合的模型被错误地指定,并且应该很难适应数据。希望我们会发现Hosmer-Lemeshow测试在5%的时间内正确地找到了不合适的证据。具体来说,我们现在将生成跟随具有协变量的逻辑模型,但我们将继续使用线性协变量拟合模型,以便我们的拟合模型被错误地指定。

我们发现,计算p值小于0.05的比例


[1] 0.648

因此,Hosmer-Lemeshow测试为我们提供了65%的不合适的重要证据。

相关文章
|
6天前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
6天前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
6天前
|
数据可视化
【R语言实战】——金融时序分布拟合
【R语言实战】——金融时序分布拟合
|
6天前
|
数据可视化 前端开发 数据挖掘
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享(上)
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享
|
6天前
|
机器学习/深度学习 数据可视化
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
|
6天前
|
存储 数据采集 数据可视化
R语言拟合线性混合效应模型、固定效应随机效应参数估计可视化生物生长、发育、繁殖影响因素
R语言拟合线性混合效应模型、固定效应随机效应参数估计可视化生物生长、发育、繁殖影响因素
|
6天前
|
数据可视化
R语言汇率、股价指数与GARCH模型分析:格兰杰因果检验、脉冲响应与预测可视化
R语言汇率、股价指数与GARCH模型分析:格兰杰因果检验、脉冲响应与预测可视化
|
6天前
|
数据可视化
R语言平稳性ADF检验、ARCH-LM效应检验分析收盘价收益率数据可视化
R语言平稳性ADF检验、ARCH-LM效应检验分析收盘价收益率数据可视化
|
6天前
|
机器学习/深度学习 数据可视化 算法
R语言拟合改进的稀疏广义加性模型(RGAM)预测、交叉验证、可视化
R语言拟合改进的稀疏广义加性模型(RGAM)预测、交叉验证、可视化
|
6天前
|
数据可视化 Python
R语言分析糖尿病数据:多元线性模型、MANOVA、决策树、典型判别分析、HE图、Box's M检验可视化
R语言分析糖尿病数据:多元线性模型、MANOVA、决策树、典型判别分析、HE图、Box's M检验可视化

热门文章

最新文章