python安娜卡列妮娜词云图制作

简介: python安娜卡列妮娜词云图制作

知识点普及


词频:某个词在该文档中出现的次数停用词:数据处理时过滤掉某些字或词,如:网站、的等语料库:也就是我们要分析的所有文档的集合中文分词:将汉字序列分成一个个单独的词


使用第三方库介绍

jieba

jieba.cut(content)

content 为分词的句子

pandas

pandas.DataFrame()生成DataFrame对象

pandas.DataFrame.groupby()分组统计


分组统计实例

pandas.DataFrame.groupby(by=列名数组)[统计列名数组].agg({ 统计项名称:统计函数})

wordcloudpython构建词云的库文件

安装方式请自行案例


词云实现

#!/usr/bin/env python
# coding=utf-8
import os
import jieba
import codecs
import pandas as pd
import numpy as npfrom wordcloud 
import WordCloud,ImageColorGenerator
import matplotlib.pyplot as plt
#导入所用库文件
basefile = data

# 语料库加载
f_in = codecs.open(basefile+'an.txt','r','utf-8') content = f_in.read()
#分词,生成segments列表segments = []
segs = jieba.cut(content)for seg in segs: if len(seg)>1: segments.append(seg)
#生成DataFrame对象segmentDF = pd.DataFrame({'segment':segments})
#分组统计segStat = segmentDF.groupby( by = ['segment'] )['segment'].agg({ '计数':np.size}).reset_index().sort_values(by = ['计数'], ascending = False )
#加载停用词 stopwords = pd.read_csv( "./StopwordsCN.txt", encoding='utf8', index_col=False)
#移除停用词,并做去反操作fSegStat = segStat[ ~segStat.segment.isin(stopwords.stopword)]
#构建词云文件wordcloud = WordCloud( font_path='./simhei.ttf',
 #词云展示字体 background_color="black",
#词云展示背景颜色
)
words = fSegStat.set_index('segment').to_dict()wordcloud.fit_words(words['计数'])plt.imshow(wordcloud)plt.show()

效果展示


词云美化

from scipy.misc import imread#读取图片背景
bimg = imread(basefile+'An.png')
wordcloud = WordCloud( background_color="white", mask=bimg, font_path='./simhei.ttf')wordcloud = wordcloud.fit_words(words['计数'])
#设置图片大小
plt.figure( num=None, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k')
#获取图片颜色
bimgColors = ImageColorGenerator(bimg)plt.axis("off")
#重置词云颜色
plt.imshow(wordcloud.recolor(color_func=bimgColors))plt.show()

 
相关文章
|
6月前
|
机器学习/深度学习 自然语言处理 数据可视化
基于Python+词云图+情感分析对某东上完美日记的用户评论分析
基于Python+词云图+情感分析对某东上完美日记的用户评论分析
343 0
基于Python+词云图+情感分析对某东上完美日记的用户评论分析
|
5月前
|
数据采集 自然语言处理 搜索推荐
python【包含数据预处理】基于词频生成词云图
背景目的 有一篇中文文章,或者一本小说。想要根据词频来生成词云图。
|
3月前
|
自然语言处理 数据可视化 搜索推荐
用Python制作酷炫词云图,原来这么简单!
用Python制作酷炫词云图,原来这么简单!
|
4月前
|
数据采集 自然语言处理 大数据
​「Python大数据」词频数据渲染词云图导出HTML
使用Python,本文展示数据聚类和办公自动化,焦点在于通过jieba分词处理VOC数据,构建词云图并以HTML保存。`wordCloud.py`脚本中,借助pyecharts生成词云,如图所示,关键词如"Python"、"词云"等。示例代码创建了词云图实例,添加词频数据,并输出到"wordCloud.html"。
84 1
​「Python大数据」词频数据渲染词云图导出HTML
|
5月前
|
数据采集 自然语言处理 搜索推荐
python 【包含数据预处理】基于词频生成词云图
这段文本是关于如何使用Python基于词频生成词云图的教程。内容包括:1) 中文分词的必要性,因中文无明显单词边界及语言单位特性;2) 文本预处理步骤,如移除特殊符号、网址、日期等;3) 使用`data_process`函数清除无用字符;4) `getText`函数读取并处理文本为句子数组;5) 使用jieba分词库进行分词和词频统计;6) 示例代码展示了从分词到生成词云的完整流程,最后展示生成的词云图。整个过程旨在从中文文本中提取关键词并可视化。
157 5
python 【包含数据预处理】基于词频生成词云图
|
5月前
|
数据采集 自然语言处理 数据可视化
拿来及用的Python词云图代码 | wordcloud生成词云详解
词云也叫文字云,是一种可视化的结果呈现,常用在爬虫数据分析中,原理就是统计文本中高频出现的词,过滤掉某些干扰词,将结果生成一张图片,直观的获取数据的重点信息。今天,我们就来学习一下Python生成词云的常用库wordcloud。
|
6月前
|
机器学习/深度学习 自然语言处理 数据可视化
用Python分析文本数据的词频并词云图可视化
用Python分析文本数据的词频并词云图可视化
189 0
|
5月前
|
自然语言处理 Python
python生成词云图
python生成词云图
|
6月前
|
自然语言处理 数据可视化 搜索推荐
手把手教你使用Python打造绚丽的词云图
手把手教你使用Python打造绚丽的词云图
519 0
手把手教你使用Python打造绚丽的词云图
|
6月前
|
Python
python绘制词云图
python绘制词云图
72 0