用Prophet在Python中进行时间序列预测

简介: 用Prophet在Python中进行时间序列预测

预测通常被认为是报告的自然发展。报告可以帮助我们回答,发生了什么事?预测有助于回答下一个逻辑问题,将会发生什么?

Prophet的目的是“使专家和非专家可以更轻松地进行符合需求的高质量预测。

您将学习如何使用Prophet(在Python中)解决一个常见问题:预测下一年公司的每日订单。


 

数据准备与探索

Prophet最适合每日定期数据以及至少一年的历史数据。我们将使用SQL处理每天要预测的数据:

select
  date,
  value
from modeanalytics.daily_orders
order by date

现在,我们每天都有数据,我们可以将SQL查询结果集通过管道传递到Python笔记本中的pandas dataframe对象中。首先,将您的SQL查询重命名为Daily Orders。然后,在Python笔记本中,我们可以使用以下语句将查询结果集通过管道传递到数据框df

df = datasets["Daily Orders"]

为了快速了解您的数据框包含多少个观测值,可以运行以下语句,该语句将返回一个元组,分别包含数据框中的行数和列数:


df.shape


先知总是期望输入DataFrame中有两列:dsy。该ds列表示SQL查询中的日期 。要检查DataFrame中列的类型,可以在Python笔记本中运行以下语句:


df.dtypes


一旦确认数据框中的列是正确的数据类型,就可以ds在数据框中创建一个新列,该date列是该列的完全相同的副本,也可以创建一个新列,该列是该列y的完全相同的副本value

df['ds'] = df['date']
df['y'] = df['value']

然后,您可以重新调整该date列的用途,以用作数据框的索引:

df.set_index('date')


这会将您的数据框的索引转换为DatetimeIndex,这使熊猫能够将此数据集解释为Time Series

现在您已经准备好要与Prophet一起使用的数据,在将数据输入到Prophet中之前,将其作图并检查数据的外观是个好习惯。



Box-Cox变换

通常在预测中,您会明确选择一种特定类型的幂变换,以将其应用于数据以消除噪声,然后再将数据输入到预测模型中(例如,对数变换或平方根变换等)。但是,有时可能难以确定哪种功率变换适合您的数据。

Box-Cox变换是一种数据变换,用于评估一组Lambda系数(λ)并选择可实现最佳正态性近似值的值。


from scipy.stats import boxcox

boxcox方法需要一个输入:要转换的一维正数据数组。您也可以选择指定要用于转换的λ值(例如,对数转换的λ= 0)。否则,该boxcox方法将找到使对数似然函数最大化的λ并将其作为第二个输出参数返回。

对于我们的示例,我们将让该boxcox方法确定用于变换的最佳λ,并将该值返回给名为lam的变量:

# Apply Box-Cox Transform to value column and assign to new column y
df['y'], lam = boxcox(df['value'])

如果我们将新转换的数据与未转换的数据一起绘制,则可以看到Box-Cox转换能够消除随着时间变化而观察到的许多增加的方差:


预测

使用Prophet创建预测的第一步是将fbprophet库导入到我们的Python笔记本中:


import fbprophet


将Prophet库导入笔记本后,我们可以从 Prophet对象(创建实例)开始:

m = fbprophet.Prophet()


实例化Prophet对象后,就可以将模型拟合到历史数据中了。您可以通过fit在Prophet对象上调用方法并传入数据框来实现此目的:

使用Prophet通过Box-Cox转换的数据集拟合模型后,现在就可以开始对未来日期进行预测。

现在,我们可以使用该predict方法对未来数据帧中的每一行进行预测。

此时,Prophet将创建一个分配给变量的新数据框,其中包含该列下未来日期的预测值
yhat以及不确定性间隔和预测的组成部分。我们可以使用Prophet的内置plot帮助器功能将预测可视化:

在我们的示例中,我们的预测如下所示:


如果要可视化各个预测组件,则可以使用Prophet的内置plot_components方法:

plot_components在我们的示例数据上运行将返回以下一组组件可视化:


预测和组件可视化显示,Prophet能够准确地建模数据中的潜在趋势,同时还可以精确地建模每周和每年的季节性(例如,周末和节假日的订单量较低)。


逆Box-Cox变换

由于先知用于Box-Cox转换后的数据,因此您需要将预测值转换回其原始单位。要将新的预测值转换回其原始单位,您将需要执行Box-Cox逆转换。

 

inv_boxcox方法有两个必需的输入。要转换的数据数组和转换的λ值。我们将对预测数据帧中的特定列进行逆变换,并提供先前从存储在lam变量中的第一个Box-Cox变换中获得的λ值:

现在,您已将预测值转换回其原始单位,现在可以将预测值与历史值一起可视化:

相关文章
|
4月前
|
存储 算法 数据挖掘
【2023年中国高校大数据挑战赛 】赛题 B DNA 存储中的序列聚类与比对 Python实现
本文介绍了2023年中国高校大数据挑战赛赛题B的Python实现方法,该赛题涉及DNA存储技术中的序列聚类与比对问题,包括错误率分析、序列聚类、拷贝数分布图的绘制以及比对模型的开发。
84 1
【2023年中国高校大数据挑战赛 】赛题 B DNA 存储中的序列聚类与比对 Python实现
|
3月前
|
机器学习/深度学习 数据采集 算法
时间序列结构变化分析:Python实现时间序列变化点检测
在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。
207 1
|
4月前
|
机器学习/深度学习 算法 数据挖掘
6种有效的时间序列数据特征工程技术(使用Python)
在本文中,我们将探讨使用日期时间列提取有用信息的各种特征工程技术。
142 0
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
11种经典时间序列预测方法:理论、Python实现与应用
本文将总结11种经典的时间序列预测方法,并提供它们在Python中的实现示例。
68 2
11种经典时间序列预测方法:理论、Python实现与应用
|
2月前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
58 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
3月前
|
机器学习/深度学习 索引 Python
python之序列
python之序列
144 59
|
2月前
|
存储 编译器 索引
Python 序列类型(2)
【10月更文挑战第8天】
Python 序列类型(2)
|
2月前
|
存储 C++ 索引
Python 序列类型(1)
【10月更文挑战第8天】
|
3月前
|
机器学习/深度学习 数据采集 算法
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
有多种方法可以处理时间序列数据中的噪声。本文将介绍一种在我们的研究项目中表现良好的方法,特别适用于时间序列概况中数据点较少的情况。
55 1
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
|
4月前
|
机器学习/深度学习 Python
时间序列特征提取:从理论到Python代码实践
时间序列是一种特殊的存在。这意味着你对表格数据或图像进行的许多转换/操作/处理技术对于时间序列来说可能根本不起作用。
62 1
时间序列特征提取:从理论到Python代码实践
下一篇
无影云桌面