如何看待云原生数据库一体化的技术趋势?

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 【4月更文挑战第12天】如何看待云原生数据库一体化的技术趋势?

在进入今天的话题之前,先来了解一下两个基本概念。

OLTP(联机事务处理)是指为实时事务操作和日常运营任务服务的数据处理系统。OLTP主要负责实时处理事务数据,支持数据的插入、更新和删除操作,强调高并发性和实时性,主要用于记录日常的业务事件,如购买行为等。

OLAP(联机分析处理)是一类数据处理分析系统,旨在通过复杂的分析查询,从大量数据中筛选有价值数据。OLAP主要专注于数据的分析,提供复杂的数据查询和统计分析功能,用于数据挖掘和决策支持。

那么下面再来看看今天的话题。

在业务处理分析一体化的背景下,开发者如何平衡OLTP和OLAP数据库的技术需求与选型?

在现代业务的发展背景下,可以说数据库的选型已经不再单一的局限在从OLTP和OLAP两种数据行为二选一,而是既要有OLTP的实时事务数据处理,又要有OLAP的数据查询与分析,单一的数据库技术选型已经无法满足现在迅速增长的数据量和飞速变化的市场环境了。

那么在这种场景下,开发人员如何平衡OLTP和OLAP数据库的技术需求与选型就显得尤为重要。正如文中所说,摆在开发者面前的是【选300平米别墅还是90平米小平层】,集中式数据库(90平米)可以满足日常业务所需,资源规模也合适,成本相对适中,性价比更高,另外运维操作上也简单,问题容易排查。分布式数据库(300平米)的优势也是显而易见的,就是无论什么时候,都不担心90平米住不下的问题(具备较高的性能,能够处理复杂的业务场景,满足客户对高吞吐、大存储、低延时、易扩展和超高可用数据库服务的需求),但是劣势也是很明显,首先带来的就是成本的升高,另外各个子数据库之间网络连接问题,以及后期运维难度的提升,都是必须考虑的问题。

集中式与分布式数据库的边界正在模糊,开发者如何看待这一变化?这种变化对数据库的设计和维护会带来哪些影响?

有了上面开发者选型的苦恼,那么就有了PolarDB分布式版的集分一体化的诞生。怎么说呢,简单理解就是你既可以达到集中式数据库的数据实时处理,又可以达到分布式数据库的高吞吐、大存储、低延时、易扩展和超高可用数据库服务。集分一体化的诞生,使得集中式和分布式数据库的界限不再那么明显,开发者在数据库设计和维护上既可以达到集中式的数据实时处理要求,又可以达到分布式的超高可用。这在一定程度上扩宽了开发者的数据库设计方向,降低了数据库的维护难度,那么对于开发者来说,无疑是最好的消息。

作为一名开发者,你会选择云原生一体化数据库吗?会在什么场景中使用呢?

作为开发者,具体选择什么类型的数据库,还是要看具体的业务场景。虽然云原生一体化数据库确实很优秀,解决了传统集中式数据库与分布式数据库难以共存的局面,但是也不能在面临数据库选型时毫不考虑的就选择云原生一体化数据库。对于开发者,对于企业来说,盈利才是目的,那么可以降低成本自然是要选择降低成本。

比如现在有一个业务系统,数据量不大,访问量不大,主要用于内部管理使用,数据增长速度也不快,那么这样的业务场景,原来的单一集中式数据库就是可以满足的,且可以节省成本,提高效益。

再比如现在有一个业务系统,数据量初期不大,后期可能会很大,访问量也是同样的情况,那么面对这样的业务系统,在数据库选型上当然是优先考虑云原生一体化数据库。不然随着后期数据量的巨大增长,集中式数据库必然难以招架,这时候切换分布式系统,成本较高,不确定因素复杂。那么像这种情况,从业务系统初期就选择云原生一体化数据库,一劳永逸,无疑是最好的选择。

因此数据库的选型,还是要看业务场景,不能说觉得集分一体化好了,就只选云原生一体化数据库,还是要具体问题具体对待。

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
1月前
|
SQL Java 数据库连接
除了JDBC,还有哪些常见的数据库访问技术?
除了JDBC,还有哪些常见的数据库访问技术?
219 2
|
2月前
|
监控 Cloud Native Java
Quarkus 云原生Java框架技术详解与实践指南
本文档全面介绍 Quarkus 框架的核心概念、架构特性和实践应用。作为新一代的云原生 Java 框架,Quarkus 旨在为 OpenJDK HotSpot 和 GraalVM 量身定制,显著提升 Java 在容器化环境中的运行效率。本文将深入探讨其响应式编程模型、原生编译能力、扩展机制以及与微服务架构的深度集成,帮助开发者构建高效、轻量的云原生应用。
357 44
|
2月前
|
SQL 数据可视化 关系型数据库
MCP与PolarDB集成技术分析:降低SQL门槛与简化数据可视化流程的机制解析
阿里云PolarDB与MCP协议融合,打造“自然语言即分析”的新范式。通过云原生数据库与标准化AI接口协同,实现零代码、分钟级从数据到可视化洞察,打破技术壁垒,提升分析效率99%,推动企业数据能力普惠化。
263 3
|
1月前
|
Kubernetes Cloud Native 云计算
云计算与云原生技术探索
🌟蒋星熠Jaxonic,云原生探索者!以代码为舟,遨游技术星河。专注容器化、微服务、K8s与DevOps,践行GitOps理念,拥抱多云未来。用架构编织星辰,让创新照亮极客征途!
云计算与云原生技术探索
|
1月前
|
Java Linux 虚拟化
【Docker】(1)Docker的概述与架构,手把手带你安装Docker,云原生路上不可缺少的一门技术!
1. Docker简介 1.1 Docker是什么 为什么docker会出现? 假定您在开发一款平台项目,您的开发环境具有特定的配置。其他开发人员身处的环境配置也各有不同。 您正在开发的应用依赖于您当前的配置且还要依赖于某些配置文件。 您的企业还拥有标准化的测试和生产环境,且具有自身的配置和一系列支持文件。 **要求:**希望尽可能多在本地模拟这些环境而不产生重新创建服务器环境的开销 问题: 要如何确保应用能够在这些环境中运行和通过质量检测? 在部署过程中不出现令人头疼的版本、配置问题 无需重新编写代码和进行故障修复
339 2
|
6月前
|
人工智能 Cloud Native 安全
云原生+AI 为企业出海提供全新技术引擎!明天见
5月22日 14:00「飞天发布时刻」,阿里云云原生应用平台产品负责人李国强将重磅揭晓面向 AI 场景的云原生产品体系升级,通过弹性智能的全球一体化架构、开箱即用的云原生 AI 工程化能力,为中国企业出海提供全新技术引擎。
|
2月前
|
监控 Java 关系型数据库
HikariCP 高性能数据库连接池技术详解与实践指南
本文档全面介绍 HikariCP 高性能数据库连接池的核心概念、架构设计和实践应用。作为目前性能最优异的 Java 数据库连接池实现,HikariCP 以其轻量级、高性能和可靠性著称,已成为 Spring Boot 等主流框架的默认连接池选择。本文将深入探讨其连接管理机制、性能优化策略、监控配置以及与各种框架的集成方式,帮助开发者构建高性能的数据访问层。
258 8
|
2月前
|
监控 Java 关系型数据库
HikariCP 高性能数据库连接池技术详解与实践指南
本文档全面介绍 HikariCP 高性能数据库连接池的核心概念、架构设计和实践应用。作为目前性能最优异的 Java 数据库连接池实现,HikariCP 以其轻量级、高性能和可靠性著称,已成为 Spring Boot 等主流框架的默认连接池选择。本文将深入探讨其连接管理机制、性能优化策略、监控配置以及与各种框架的集成方式,帮助开发者构建高性能的数据访问层。
183 1
|
2月前
|
SQL 数据管理 BI
数据库操作三基石:DDL、DML、DQL 技术入门指南
本文围绕数据库操作核心语言 DDL、DML、DQL 展开入门讲解。DDL 作为 “结构建筑师”,通过CREATE(建库 / 表)、ALTER(修改表)、DROP(删除)等命令定义数据库结构;DML 作为 “数据管理员”,以INSERT(插入)、UPDATE(更新)、DELETE(删除)操作数据表记录,需搭配WHERE条件避免误操作;DQL 作为 “数据检索师”,通过SELECT结合WHERE、ORDER BY、LIMIT等子句实现数据查询与统计。三者相辅相成,是数据库操作的基础,使用时需注意 DDL 的不可撤销性、DML 的条件约束及 DQL 的效率优化,为数据库学习与实践奠定基础。
|
3月前
|
缓存 关系型数据库 MySQL
MySQL数据库性能调优:实用技术与策略
通过秉持以上的策略实施具体的优化措施,可以确保MySQL数据库的高效稳定运行。务必结合具体情况,动态调整优化策略,才能充分发挥数据库的性能潜力。
187 0