机器学习基础入门(一)(机器学习定义及分类)

简介: 机器学习基础入门(一)(机器学习定义及分类)

机器学习定义

给予计算机无需特意带有目的性编程便有学习能力的算法

深度学习算法

主要有监督学习非监督学习两类

监督学习(supervised learning)

定义

1、学习由x映射到y的映射关系

2、主动给予机器学习算法正确示例,算法通过示例来学习映射关系

举例

1、给邮件判断是否是垃圾邮件

2、给音频输出音频的文本

3、给英语输出西班牙语

4、给广告以及用户信息,判断用户是否会点击这个广告

5、给图像以及其他传感器信息,判断汽车以及其他物体的位置

6、给不同房子大小对应的价格(如下图),判断朋友房子(已知大小)对应的价格

总结

给算法正确的x、y值,算法能够学习x->y的映射关系,从而此后我们给x便可以知道y的值,

这就是监督学习算法

监督学习算法主要由两种类型:1、回归 2、分类

非监督学习(unsupervised learning)

定义

1、数据仅仅有x输入,并没有输出标签y

2、非监督算法没有特定的正确输出

3、算法要主动研究数据分布的结构特点等

举例

1、聚类模型:谷歌新闻推荐

概述:如果我们看一篇有关熊猫、双胞胎的文章,谷歌新闻会很自然的给你推荐其他有熊猫和双胞胎关键字的新闻。本质上是因为算法将这些新闻归为一类,而事先我们并没与规定要根据哪些词将文章归类。

流程:算法主动学习文章标题中的重点关键字---->根据关键字将数万计的新闻分成数万计的类型---->在用户搜索时将同种类型新闻同步展示

核心:工作人员并没有告诉算法哪些是关键字,也没有说要分为几类,在没有监督的情况下算法要自己去学习这些知识

2、聚类模型:客户分类

概述:根据一些指标将用户呈现在空间中的不同位置,算法自己学习将客户分为几类,并判断哪一类的客户会订阅我的专栏(嘻嘻)

流程:算法主动学习用户所在的位置---->自己确定要将用户分为几类---->根据函数等数学方法将其分为几类

核心:工作人员并没有告诉算法要分为几类,在没有监督的情况下算法要自己去确定要分为几类,并成功分类

(下图中的客户就将被分为三类)

总结

监督算法主要有三类: 1、聚类  2、异常值检测  3、降维

上面这三类算法特点都是:没有人类监督的情况下,算法要自己挖掘数据的特点从而总结出一些数据的特性,来进行任务处理

总结

机器学习:让算法拥有类似于人类的学习能力,能够不靠人类手动操作自动能够学习一些知识,并代替人类完成一些工作。

机器学习算法分为:一、监督学习    二、非监督学习

监督学习典型算法:回归、分类

非监督学习典型算法:聚类、降维

本篇文章如果能帮助到大家,大家可以点点赞、收收藏呀~

 

相关文章
|
2月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
37 2
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
33 1
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
24 1
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
59 2
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第6天】在人工智能领域,机器学习已成为核心技术。本文指导初学者使用Python与Scikit-learn入门机器学习,涵盖基本概念、环境搭建、数据处理、模型训练及评估等环节。Python因简洁性及其生态系统成为首选语言,而Scikit-learn则提供了丰富工具,简化数据挖掘与分析流程。通过实践示例,帮助读者快速掌握基础知识,为进一步深入研究奠定坚实基础。
29 4
|
2月前
|
机器学习/深度学习
如何用贝叶斯方法来解决机器学习中的分类问题?
【10月更文挑战第5天】如何用贝叶斯方法来解决机器学习中的分类问题?
|
2月前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
512 1
|
2月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
2月前
|
机器学习/深度学习 算法 数据可视化
机器学习的核心功能:分类、回归、聚类与降维
机器学习领域的基本功能类型通常按照学习模式、预测目标和算法适用性来分类。这些类型包括监督学习、无监督学习、半监督学习和强化学习。
45 0