MySQL与Redis的默契协作:解析数据一致性难题与解决方案

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: MySQL与Redis的默契协作:解析数据一致性难题与解决方案


直接先抛一下结论:在满足实时性的条件下,不存在两者完全保存一致的方案,只有最终一致性方案。 根据网上的众多解决方案,总结出 6 种,直接看目录:

不好的方案

  1. 先写 MySQL,再写 Redis

图解说明:

  • 这是一副时序图,描述请求的先后调用顺序;
  • 橘黄色的线是请求 A,黑色的线是请求 B;
  • 橘黄色的文字,是 MySQL 和 Redis 最终不一致的数据;
  • 数据是从 10 更新为 11;
  • 后面所有的图,都是这个含义,不再赘述。

请求 A、B 都是先写 MySQL,然后再写 Redis,在高并发情况下,如果请求 A 在写 Redis 时卡了一会,请求 B 已经依次完成数据的更新,就会出现图中的问题。

这个图已经画的很清晰了,我就不用再去啰嗦了吧,不过这里有个前提,就是对于读请求,先去读 Redis,如果没有,再去读 DB,但是读请求不会再回写 Redis。 大白话说一下,就是读请求不会更新 Redis。

  1. 先写 Redis,再写 MySQL

同 “先写 MySQL,再写 Redis”,看图可秒懂。

  1. 先删除 Redis,再写 MySQL

这幅图和上面有些不一样,前面的请求 A 和 B 都是更新请求,这里的请求 A 是更新请求,但是请求 B 是读请求,且请求 B 的读请求会回写 Redis。

请求 A 先删除缓存,可能因为卡顿,数据一直没有更新到 MySQL,导致两者数据不一致。

这种情况出现的概率比较大,因为请求 A 更新 MySQL 可能耗时会比较长,而请求 B 的前两步都是查询,会非常快。

好的方案

  1. 先删除 Redis,再写 MySQL,再删除 Redis

对于 “先删除 Redis,再写 MySQL”,如果要解决最后的不一致问题,其实再对 Redis 重新删除即可,这个也是大家常说的 “缓存双删”。

为了便于大家看图,对于蓝色的文字,“删除缓存 10”必须在 “回写缓存 10” 后面,那如何才能保证一定是在后面呢?网上给出的第一个方案是,让请求 A 的最后一次删除,等待 500ms。

对于这种方案,看看就行,反正我是不会用,太 Low 了,风险也不可控。

那有没有更好的方案呢,我建议异步串行化删除,即删除请求入队列

异步删除对线上业务无影响,串行化处理保障并发情况下正确删除。

如果双删失败怎么办,网上有给 Redis 加一个缓存过期时间的方案,这个不敢苟同。个人建议整个重试机制,可以借助消息队列的重试机制,也可以自己整个表,记录重试次数,方法很多。

简单小结一下:

  • “缓存双删” 不要用无脑的 sleep 500 ms;
  • 通过消息队列的异步 & 串行,实现最后一次缓存删除;
  • 缓存删除失败,增加重试机制。
  1. 先写 MySQL,再删除 Redis

对于上面这种情况,对于第一次查询,请求 B 查询的数据是 10,但是 MySQL 的数据是 11,只存在这一次不一致的情况,对于不是强一致性要求的业务,可以容忍。(那什么情况下不能容忍呢,比如秒杀业务、库存服务等。)

当请求 B 进行第二次查询时,因为没有命中 Redis,会重新查一次 DB,然后再回写到 Reids。

这里需要满足 2 个条件:

  • 缓存刚好自动失效;
  • 请求 B 从数据库查出 10,回写缓存的耗时,比请求 A 写数据库,并且删除缓存的还长。

对于第二个条件,我们都知道更新 DB 肯定比查询耗时要长,所以出现这个情况的概率很小,同时满足上述条件的情况更小。

  1. 先写 MySQL,通过 Binlog,异步更新 Redis

这种方案,主要是监听 MySQL 的 Binlog,然后通过异步的方式,将数据更新到 Redis,这种方案有个前提,查询的请求,不会回写 Redis。

这个方案,会保证 MySQL 和 Redis 的最终一致性,但是如果中途请求 B 需要查询数据,如果缓存无数据,就直接查 DB;如果缓存有数据,查询的数据也会存在不一致的情况。

所以这个方案,是实现最终一致性的终极解决方案,但是不能保证实时性。

方案比较

我们对比上面讨论的 6 种方案:

  1. 先写 Redis,再写 MySQL
  • 这种方案,我肯定不会用,万一 DB 挂了,你把数据写到缓存,DB 无数据,这个是灾难性的;
  • 我之前也见同学这么用过,如果写 DB 失败,对 Redis 进行逆操作,那如果逆操作失败呢,是不是还要搞个重试?
  1. 先写 MySQL,再写 Redis
  • 对于并发量、一致性要求不高的项目,很多就是这么用的,我之前也经常这么搞,但是不建议这么做;
  • 当 Redis 瞬间不可用的情况,需要报警出来,然后线下处理。
  1. 先删除 Redis,再写 MySQL
  • 这种方式,我还真没用过,直接忽略吧。
  1. 先删除 Redis,再写 MySQL,再删除 Redis
  • 这种方式虽然可行,但是感觉好复杂,还要搞个消息队列去异步删除 Redis。
  1. 先写 MySQL,再删除 Redis
  • 比较推荐这种方式,删除 Redis 如果失败,可以再多重试几次,否则报警出来;
  • 这个方案,是实时性中最好的方案,在一些高并发场景中,推荐这种。
  1. 先写 MySQL,通过 Binlog,异步更新 Redis
  • 对于异地容灾、数据汇总等,建议会用这种方式,比如 binlog + kafka,数据的一致性也可以达到秒级;
  • 纯粹的高并发场景,不建议用这种方案,比如抢购、秒杀等。

个人结论:

  • 实时一致性方案:采用 “先写 MySQL,再删除 Redis” 的策略,这种情况虽然也会存在两者不一致,但是需要满足的条件有点苛刻,所以是满足实时性条件下,能尽量满足一致性的最优解。
  • 最终一致性方案:采用 “先写 MySQL,通过 Binlog,异步更新 Redis”,可以通过 Binlog,结合消息队列异步更新 Redis,是最终一致性的最优解。


相关文章
|
9天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
77 9
|
5天前
|
存储 SQL 关系型数据库
MySQL事务处理:如何确保数据一致性与可靠性
事务(Transaction)是数据库管理系统(DBMS)中的一个核心概念。MySQL 事务是指**一组数据库操作**,作为一个整体进行处理,确保要么全部成功,要么全部失败。
35 15
MySQL事务处理:如何确保数据一致性与可靠性
|
5天前
|
物联网 调度 vr&ar
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
鸿蒙技术分享:HarmonyOS Next 深度解析 随着万物互联时代的到来,华为发布的 HarmonyOS Next 在技术架构和生态体验上实现了重大升级。本文从技术架构、生态优势和开发实践三方面深入探讨其特点,并通过跨设备笔记应用实战案例,展示其强大的分布式能力和多设备协作功能。核心亮点包括新一代微内核架构、统一开发语言 ArkTS 和多模态交互支持。开发者可借助 DevEco Studio 4.0 快速上手,体验高效、灵活的开发过程。 239个字符
150 13
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
|
17天前
|
NoSQL Java 关系型数据库
Liunx部署java项目Tomcat、Redis、Mysql教程
本文详细介绍了如何在 Linux 服务器上安装和配置 Tomcat、MySQL 和 Redis,并部署 Java 项目。通过这些步骤,您可以搭建一个高效稳定的 Java 应用运行环境。希望本文能为您在实际操作中提供有价值的参考。
89 26
|
2天前
|
NoSQL 关系型数据库 MySQL
Linux安装jdk、mysql、redis
Linux安装jdk、mysql、redis
58 7
|
11天前
|
存储 关系型数据库 MySQL
double ,FLOAT还是double(m,n)--深入解析MySQL数据库中双精度浮点数的使用
本文探讨了在MySQL中使用`float`和`double`时指定精度和刻度的影响。对于`float`,指定精度会影响存储大小:0-23位使用4字节单精度存储,24-53位使用8字节双精度存储。而对于`double`,指定精度和刻度对存储空间没有影响,但可以限制数值的输入范围,提高数据的规范性和业务意义。从性能角度看,`float`和`double`的区别不大,但在存储空间和数据输入方面,指定精度和刻度有助于优化和约束。
|
29天前
|
消息中间件 监控 NoSQL
Redis脑裂问题详解及解决方案
Redis脑裂问题是分布式系统中常见的复杂问题,合理配置Redis Sentinel、使用保护模式、采用分布式锁机制以及优化网络和客户端连接策略等措施,可以有效预防和解决脑裂问题。通过深入理解Redis脑裂问题的成因和影响,采取相应的解决方案,能够提高系统的可用性和数据一致性,保障Redis集群的稳定运行。希望本文能帮助你更好地理解和应对Redis脑裂问题。
37 2
|
1月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
67 14
|
1月前
|
存储 NoSQL 关系型数据库
MySQL和Redis的区别
**MySQL和Redis的区别** MySQL和Redis都是流行的数据存储解决方案,但它们在设计、用途和特性上有显著区别。理解这些区别有助于选择合适的数据库来满足不同的应用需求。本文将详细介绍MySQL和Redis的区别,包括它们的架构、使用场景、性能和其他关键特性。 ### 一、基本概述 **MySQL**: MySQL是一个关系型数据库管理系统(RDBMS),使用结构化查询语言(SQL)进行数据管理。它支持事务、复杂查询和多种存储引擎,广泛应用于各种Web应用、企业系统和数据分析项目。 **Redis**: Redis是一个基于内存的键值数据库,通常被称为NoSQL数
90 4
|
1月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
43 5

推荐镜像

更多