算法系列--动态规划--⼦数组、⼦串系列(数组中连续的⼀段)(1)(上)

简介: 算法系列--动态规划--⼦数组、⼦串系列(数组中连续的⼀段)(1)

💕"我们好像在池塘的水底,从一个月亮走向另一个月亮。"💕

作者:Mylvzi

文章主要内容:算法系列–动态规划–⼦数组、⼦串系列(数组中连续的⼀段)(1)

大家好,今天为大家带来的是算法系列--动态规划--⼦数组、⼦串系列(数组中连续的⼀段)(1),这是动态规划新的一种题型

1.最⼤⼦数组和

链接:

https://leetcode.cn/problems/maximum-subarray/

分析:

动态规划的子数组问题和前缀和问题是不一样的,

子数组和这道题要求的是子数组和的最大值,我们的状态表示就是记录以i位置为结束的所有子数组的最大和,而前缀和只是一种快速求出区间和的方法,并没有表示最大和这种状态

关于求最大子数组和问题这道题,要注意状态表示的含义以i位置为结尾的所有子数组的最大和,也就是必须以i位置为结尾,那么此时的状态其实只有两种:

  1. 单独一个
  2. 前面的一堆 + 它本身

网上的很多推到状态方程的时候其实很容易让人误解,解释的也不清楚,他们进行状态的分类是根据dp[i - 1]的正负来推导dp[i]的,有的人可能想为什么不判断nums[i]的正负呢?

其实本质都一样,笔者觉得单纯通过形式来推到方程更容易理解一些

子串/子数组问题的一个经验的状态分类就是按照长度分类的,因为他们的状态表示都比较固定,都是以i位置为结束的最大xxxx

有的题目还比较恶心(尤其是关于子串的问题),对于相同的子串有时候还需要去重,就需要额外开一个数组来统计次数

本题的分析思路:

代码:

class Solution {
    public int maxSubArray(int[] nums) {
        int n = nums.length;
        int dp = 0;
        int max = -0x3f3f3f3f;// 将最大/小值设置为+-ox3f3f3f3f是一种经验
        for(int num : nums) {
            dp = Math.max(num,dp + num);// 填表
            max = Math.max(max,dp);// 更新最值
        }
        return max;
    }
}

2.环形⼦数组的最⼤和

链接:

https://leetcode.cn/problems/maximum-sum-circular-subarray/description/

分析:

本题是上题的一个变种,这里带环了,对于带环的问题,我们最常用的一个做法是想办法将其转化为线性的,对于本题我们可以采用分类讨论的思想

根据什么区分类讨论呢?往往是根据最后结果可能出现的形式去考虑,对于本题,最长的子数组和可能是两种情况

  1. 不带环,在区间内部
  2. 带环,跨越区间

对于情况1,就是最大子数组和的解法,对于情况2,可以转化为求区间内的最小值,那么最大值就是sum - min,最后返回情况1和情况2的最大值即可

下面是详细分析过程

代码:

class Solution {
    public int maxSubarraySumCircular(int[] nums) {
        // 创建dp表
        int n = nums.length;
        if(n == 1) return nums[0];
        int[] f = new int[n];
        int[] g = new int[n];
        // 初始化
        f[0] = g[0] = nums[0];
        int max = -0x3f3f3f3f;
        int min = 0x3f3f3f3f;
        int sum = nums[0];
        // 填表
        for(int i = 1; i < n; i++) {
            f[i] = Math.max(nums[i],f[i - 1] + nums[i]);
            g[i] = Math.min(nums[i],g[i - 1] + nums[i]);
            max = Math.max(max,f[i]);
            min = Math.min(min,g[i]);
            sum += nums[i];
        }
        // 返回值
        return sum == min ? max : Math.max(max,sum - min);
    }
}

算法系列--动态规划--⼦数组、⼦串系列(数组中连续的⼀段)(1)(下)https://developer.aliyun.com/article/1480828?spm=a2c6h.13148508.setting.19.361f4f0eyTL4lb


目录
相关文章
|
7月前
|
存储 算法 Java
算法系列之动态规划
动态规划(Dynamic Programming,简称DP)是一种用于解决复杂问题的算法设计技术。它通过将问题分解为更小的子问题,并存储这些子问题的解来避免重复计算,从而提高算法的效率。
257 4
算法系列之动态规划
|
6月前
|
存储 监控 算法
关于员工上网监控系统中 PHP 关联数组算法的学术解析
在当代企业管理中,员工上网监控系统是维护信息安全和提升工作效率的关键工具。PHP 中的关联数组凭借其灵活的键值对存储方式,在记录员工网络活动、管理访问规则及分析上网行为等方面发挥重要作用。通过关联数组,系统能高效记录每位员工的上网历史,设定网站访问权限,并统计不同类型的网站访问频率,帮助企业洞察员工上网模式,发现潜在问题并采取相应管理措施,从而保障信息安全和提高工作效率。
86 7
|
11月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
11月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
106 0
|
7月前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
264 23
|
8月前
|
算法 Java C++
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
210 5
|
7月前
|
算法 安全 调度
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
|
7月前
|
机器学习/深度学习 算法 测试技术
【动态规划篇】01 背包的逆袭:如何用算法装满你的 “财富背包”
【动态规划篇】01 背包的逆袭:如何用算法装满你的 “财富背包”
|
11月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
494 2
动态规划算法学习三:0-1背包问题
|
11月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
170 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器

热门文章

最新文章