谷歌DeepMind发布Gecko:专攻检索,与大7倍模型相抗衡

简介: 【4月更文挑战第12天】谷歌DeepMind的Gecko模型以小巧身形(256维)展现出媲美大型语言模型的检索性能,且在MTEB基准测试中超越768维模型。采用两步蒸馏法训练,适用于多任务及硬件环境,尤其在多语言处理上表现出色。尽管训练成本高、泛化能力待优化,但其创新为文本嵌入技术带来新可能。

f2b41c0d3232d68c8c9141bc146ffb93.jpg
在人工智能领域,文本嵌入模型的发展一直是推动自然语言处理技术进步的关键因素。近期,谷歌DeepMind团队推出了一款名为Gecko的新型文本嵌入模型,它在检索性能上展现出了与大型语言模型相媲美的能力,而其模型尺寸却远小于后者。这一成果不仅为文本嵌入技术的未来发展方向提供了新的思路,也为相关领域的研究者和开发者带来了新的工具和可能性。

Gecko模型的核心优势在于其紧凑性和多功能性。通过对大型语言模型(LLMs)的知识进行提炼和融合,Gecko能够在较小的模型体积下实现强大的检索性能。在Massive Text Embedding Benchmark(MTEB)的测试中,Gecko以256维的嵌入维度超越了所有现有的768维模型,甚至在某些方面与比其大7倍的模型相媲美。这一成就标志着在保持模型效率的同时,也能够实现高性能的文本嵌入。

Gecko模型的开发过程中,DeepMind团队采用了一种独特的两步蒸馏方法。首先,利用大型语言模型生成多样化的合成数据对,然后通过检索候选段落并使用LLMs重新标记正面和负面段落,进一步提升数据质量。这种方法不仅提高了模型的准确性,也为模型的训练和优化提供了新的视角。

在实际应用中,Gecko模型展现出了广泛的适用性和灵活性。它不仅能够在文档检索、句子相似性、分类等任务上取得优异表现,还能够适应不同的硬件环境和应用场景。这一点在智能手机、个人电脑等多种设备上的测试中得到了验证。此外,Gecko模型在处理多语言任务时也表现出色,即使在只使用英语数据集进行训练的情况下,也能够在其他语言的检索任务中取得良好的效果。

然而,尽管Gecko模型在多个方面取得了显著的成就,但在实际应用过程中仍然存在一些挑战和局限性。例如,模型的训练成本和数据集的生成过程相对复杂,需要大量的计算资源和精心设计的算法。此外,模型的泛化能力和对特定任务的适应性也需要进一步的研究和优化。

论文地址:https://arxiv.org/pdf/2403.20327.pdf

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第17天】近日,谷歌、DeepMind等四大机构联合发布论文,展示大型语言模型(LLMs)在数学问题解决上的显著进步。通过引入元认知知识,研究人员开发了提示引导的交互程序,使LLMs能为数学问题分配合理技能标签并进行语义聚类。实验结果显示,GPT-4在GSM8K和MATH数据集上的准确性分别提升了11.6%和7.52%,展现出巨大潜力。这一成果不仅为AI领域提供了新思路,也为数学教育带来了启示。
42 4
|
23天前
|
人工智能 数据处理 异构计算
LongRAG:智谱联合清华和中科院推出的双视角鲁棒检索框架
LongRAG是由智谱、清华大学和中国科学院联合推出的双视角鲁棒检索增强生成框架,专为长文本问答设计。该框架通过混合检索器、LLM增强信息提取器、CoT引导过滤器和LLM增强生成器等组件,有效解决了长文本问答中的全局上下文理解和事实细节识别难题。LongRAG在多个数据集上表现优异,提供了自动化微调数据构建管道,增强了系统的“指令跟随”能力和领域适应性。
52 1
LongRAG:智谱联合清华和中科院推出的双视角鲁棒检索框架
|
3月前
|
测试技术
LLM数学性能暴涨168%,微软14人团队力作!合成数据2.0秘诀曝光,智能体生成教学
【9月更文挑战第14天】微软研究团队发布了一篇介绍新型框架"AgentInstruct"的论文,该框架旨在通过自动生成高质量合成数据,推动语言模型发展。AgentInstruct仅需原始数据源即可创建多样化的合成数据,减少人工工作量。研究团队基于此框架构建了含2500万训练对的数据集,展示了其在多种技能教学中的潜力。经微调后的Mistral-7b模型演进为Orca-3,在多个基准测试中显著超越同类模型。尽管如此,AgentInstruct仍面临创建流程耗时及合成数据复杂性不足等问题。论文详情见:https://arxiv.org/pdf/2407.03502
78 2
|
4月前
|
数据采集 自然语言处理 测试技术
CMU&清华新作:让LLM自己合成数据来学习,特定任务性能同样大幅提升
【8月更文挑战第24天】近期研究提出SELF-GUIDE,一种创新方法,旨在通过大型语言模型(LLMs)自动生成特定任务数据并用于自我微调,以克服其在特定任务上的性能局限。SELF-GUIDE分为三个阶段:数据合成、模型微调及性能评估。通过向目标LLM提供适当提示生成高质量合成数据,并用于微调以提升特定任务表现。实验证明,该方法在Natural Instructions V2等多个基准测试中显著提升了分类与生成任务性能。SELF-GUIDE不仅有效提高性能,还具备高数据效率,减少对外部数据依赖。然而,生成数据质量受限于LLM能力,且并非适用于所有任务。
75 4
|
7月前
|
人工智能 Rust Apache
社区供稿 | 更长、更强、更开放,零一万物 Yi-1.5 系列开源模型发布一周广受好评
5 月 13 日,零一万物 Yi 系列开源模型全新升级为 Yi-1.5。相较于去年 11 月的开源版本,这次的 Yi-1.5 在保持原 Yi 系列模型优秀的通用语言能力的前提下,通过增量训练 500B 高质量 token,大幅提高了数学逻辑、代码能力。
|
7月前
|
机器学习/深度学习 数据采集 人工智能
ICLR 2024:RLHF有了通用平台和基准,天大开源,专攻现实决策场景
【4月更文挑战第21天】天津大学在ICLR 2024发布RLHF新框架Uni-RLHF,以人类反馈引导强化学习,降低奖励函数设计需求,适应现实决策场景。该框架提供通用平台和基准,支持大规模众包注释,促进研究。尽管面临准确捕捉人类反馈、数据质量和多任务处理等挑战,但开源特性加速了学术进步。[链接](https://arxiv.org/abs/2402.02423)
107 0
|
7月前
|
机器学习/深度学习 编解码 自然语言处理
华为诺亚实验室提出CFT | 大模型打压下语义分割该何去何从?或许这就是答案!
华为诺亚实验室提出CFT | 大模型打压下语义分割该何去何从?或许这就是答案!
92 0
|
机器学习/深度学习 计算机视觉
模型大十倍,性能提升几倍?谷歌研究员进行了一番研究
模型大十倍,性能提升几倍?谷歌研究员进行了一番研究
180 0
|
机器学习/深度学习 存储 缓存
LLM推理提速2.8倍,CMU清华姚班校友提出「投机式推理」引擎SpecInfer,小模型撬动大模型高效推理
LLM推理提速2.8倍,CMU清华姚班校友提出「投机式推理」引擎SpecInfer,小模型撬动大模型高效推理
290 0
|
人工智能 API 开发者
弥补斯坦福70亿参数「羊驼」短板,精通中文的大模型来了,已开源
弥补斯坦福70亿参数「羊驼」短板,精通中文的大模型来了,已开源
179 0
下一篇
DataWorks