4大企业实例解析:为何MongoDB Atlas成为AI服务构建的首选

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 本文所提及的仅是MongoDB Atlas在AI领域可实现功能的冰山一角

随着人工智能和生成式AI技术的迅猛发展,众多企业和机构正积极利用自然语言处理(NLP)、大型语言模型(LLM)等前沿技术,打造出一系列AI驱动的产品、服务和应用程序。

本文将展示四家已在AI创新领域取得显著成效的企业,以及他们与MongoDB的紧密合作。这些企业选择了MongoDB Atlas这一多云的开发者数据平台,将操作、分析和生成式AI的数据服务完美融合,从而简化了AI应用程序的构建流程。

Pending AI:利用下一代技术,革新药物研发

澳大利亚的Pending AI公司凭借前沿的AI和量子技术,成功打造出Pending AI平台,旨在攻克药物研发初期阶段的核心难题。该平台显著提升了化合物发现流程的效率和效果,使研究人员在更短时间内、更低成本下,获得更优质、更具商业价值的模型,进而推进临床开发进程。

在开发如生成式分子设计器等核心功能时,Pending AI遭遇了巨大的挑战。因为化学领域涉及的已知药理学相关分子数量庞大无比,涵盖超过5000万种化学反应和数十亿个分子构建块。要精准设计出所需分子并确定其最佳合成路径,专业科学家往往需要经历成本高昂、耗时低效的试错过程。因此,Pending AI急需一个能够高效处理海量数据且性能卓越的数据库,以满足化学领域的广泛需求。

image.png

在对比多个数据库后,Pending AI最终选择了MongoDB。作为久经考验、稳定可靠且易于部署的解决方案,MongoDB助力Pending AI团队在MongoDB Atlas上成功构建高性能部署。尤其在Pending AI开始采用AWS云时,MongoDB Atlas以低成本的全托管方案亮相,并通过在AWS和MongoDB集群间建立私有端点,确保了数据传输的最低延迟和安全性。

展望未来,Pending AI计划进一步探索MongoDB 7.0中的Atlas Search功能。此举旨在将目前难以管理和维护的搜索功能直接集成到MongoDB中,从而摆脱对需单独维护的Elasticsearch集群的依赖,为药物研发带来更为便捷与高效的体验。

Eclipse AI:洞察客户互动,实现收入增长

Eclipse AI作为一款SaaS平台,其核心价值在于将分散于多个渠道(如客户电话、电子邮件、调查问卷、产品评论、支持工单等)的客户互动数据转化为深刻的洞察,进而助力企业留住客户并提升收入。该平台的设计初衷便是为了解决客户体验(CX)团队长期以来面临的挑战,使他们不必再为整合与分析多渠道客户反馈数据而耗费大量时间与人力。

在将客户反馈转化为可操作洞察的过程中,Eclipse AI首要面临的问题是整合那些碎片化的客户声音数据;其次,则是深入分析这些数据,提炼出具体的改进措施,以优化客户体验并防止客户流失。

MongoDB Atlas以其灵活的文档数据库特性,能够轻松存储和索引非结构化数据的向量嵌入,因此成为Eclipse AI的理想选择。借助MongoDB Atlas,Eclipse AI的开发团队能够高效、快速地构建产品,同时免去了管理基础设施的繁琐工作。此外,MongoDB Atlas Device SDKs(前称Realm)和MongoDB Atlas Search等功能在Eclipse AI平台的功能实现中发挥了至关重要的作用。

image.png

对Eclipse AI而言,MongoDB不仅是一个强大的数据库,更是一种数据即服务的理念,它助力Eclipse AI快速迭代并发布新功能,从而不断满足市场与客户的需求。

Safety Champion:构建未来安全管理,着眼生成式AI

Safety Champion,自2015年起便致力于革新安全管理行业,深知工作场所安全的重要性。该公司充分利用云技术,打破传统纸质流程局限,引领行业变革。其创始人Craig Salter强调,数据是服务核心,推动下一代安全计划的关键。因此,Safety Champion选择MongoDB作为技术基石,并于2017年采用MongoDB Atlas,提升了成本效益,降低了管理负担。

MongoDB的易用性使应用开发迅速简便,性能提升显著,为开发人员节省时间,专注业务创新和客户需求。MongoDB Charts为客户提供强大的分析功能,助力做出基于证据的安全决策。经过近十年发展,特别是在疫情期间,Safety Champion平台迅猛增长,客户数超2000家,每月处理文档高达10万份,开发团队规模翻倍。

image.png

展望未来,Safety Champion计划利用MongoDB在生成式AI、搜索和多区域等方面的优势,满足多样化需求。公司正升级至MongoDB 6.0,全面融入MongoDB Search,并计划于2024年下半年使用MongoDB Vector Search。Safety Champion正研究利用语义洞察理解员工文本数据,结合大型语言模型提取有价值信息。

Craig Salter表示,客户期望从数据中获取深入分析、见解和更高层次意义。MongoDB Atlas支持下的Safety Champion新平台,标志着公司迈向新阶段,借助生成式AI等功能,引领安全管理新纪元。

Syncly:利用MongoDB Atlas Vector Search加速客户反馈分析创新

在现今商业环境中,企业对客户反馈的迅速响应与深入分析已成为业务增长的关键。客户之声(VoC)服务日益复杂,需要借助AI技术提升分析效率。韩国的Syncly公司,作为软件即服务领域的初创企业,敏锐捕捉到了VoC市场的潜力,推出了AI驱动的客户反馈分析解决方案。

Syncly平台集成多种渠道,实时收集、管理VoC数据,并通过AI进行深入分析,为企业提出改进措施,增强客户关系。其服务核心在于自动处理大量数据,为VoC提供全面可见性,并重视语义搜索在定性分析中的作用。

然而,传统搜索功能在处理复杂数据时存在局限。Syncly积极采用AI技术,应对结构化与非结构化数据的挑战,实现高效相似性分析。为此,Syncly引入了MongoDB Atlas Vector Search,自动化数据加载与相似性分析,减轻开发者负担,提高生产力。

image.png
图四:Syncly 平台

MongoDB Atlas是为AI量身打造的数据库解决方案。MongoDB以其卓越的能力,助力企业及其开发团队有效管理那些难以整齐地适应传统关系数据库严格行和列结构的丰富结构化数据,并将其转化为富有意义且具备操作性的洞察,从而推动AI的实际应用。

此外,MongoDB Atlas新增的Vector Search(向量搜索)功能,使得开发者能够构建出由语义搜索和生成式AI驱动的智能应用,这些应用可适用于各种类型的数据。

同时,MongoDB Atlas还引入了AWS CodeWhisperer编码助手,为企业提供了更多探索AI的可能性。

本文所提及的仅是MongoDB Atlas在AI领域可实现功能的冰山一角。MongoDB的客户遍布全球,涵盖从初创企业到游戏、汽车、制造业、银行、电信等多个行业。这些客户正积极采用MongoDB Atlas及其Atlas Search、向量搜索等功能,共同描绘出未来十年AI和生成式AI的发展蓝图。

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
2月前
|
存储 缓存 负载均衡
阿里云服务器实例选择指南:热门实例性能、适用场景解析对比参考
2025年,在阿里云的活动中,主售的云服务器实例规格除了轻量应用服务器之外,还有经济型e、通用算力型u1、计算型c8i、通用型g8i、计算型c7、计算型c8y、通用型g7、通用型g8y、内存型r7、内存型r8y等,以满足不同用户的需求。然而,面对众多实例规格,用户往往感到困惑,不知道如何选择。本文旨在全面解析阿里云服务器实例的各种类型,包括经济型、通用算力型、计算型、通用型和内存型等,以供参考和选择。
|
2月前
|
弹性计算 运维 安全
优化管理与服务:操作系统控制平台的订阅功能解析
本文介绍了如何通过操作系统控制平台提升系统效率,优化资源利用。首先,通过阿里云官方平台开通服务并安装SysOM组件,体验操作系统控制平台的功能。接着,详细讲解了订阅管理功能,包括创建订阅、查看和管理ECS实例的私有YUM仓库权限。订阅私有YUM仓库能够集中管理软件包版本、提升安全性,并提供灵活的配置选项。最后总结指出,使用阿里云的订阅和私有YUM仓库功能,可以提高系统可靠性和运维效率,确保业务顺畅运行。
|
1月前
|
人工智能 计算机视觉
漫画师福音!开源AI神器让线稿着色快如闪电!MagicColor:港科大开源多实例线稿着色框架,一键生成动画级彩图
MagicColor是香港科技大学推出的多实例线稿着色框架,基于扩散模型和自监督训练策略,实现单次前向传播完成多实例精准着色,大幅提升动画制作和数字艺术创作效率。
177 20
漫画师福音!开源AI神器让线稿着色快如闪电!MagicColor:港科大开源多实例线稿着色框架,一键生成动画级彩图
|
2月前
|
存储 机器学习/深度学习 人工智能
阿里云服务器第八代通用型g8i实例评测:性能与适用场景解析
阿里云服务器通用型g8i实例怎么样?g8i实例采用CIPU+飞天技术架构,并搭载最新的Intel 第五代至强可扩展处理器(代号EMR),不仅性能得到大幅提升,同时还拥有AMX加持的AI能力增强,以及全球范围内率先支持的TDX机密虚拟机能力。这些特性使得g8i实例在AI增强和全面安全防护两大方面表现出色,尤其适用于在线音视频及AI相关应用。本文将深入探讨g8i实例的产品特性、优势、适用场景及规格族,以帮助您更好地了解这款产品,以供参考和选择。
|
3月前
|
NoSQL MongoDB 数据库
使用 docker 快速搭建开发环境的 mongodb 服务
本指南介绍如何使用 Docker 和 Docker Compose 部署 MongoDB 和 Mongo Express。首先,通过 Docker 命令分别启动 MongoDB(镜像 `mongo:7.0.14`)和 Mongo Express(镜像 `mongo-express:1.0.2-20-alpine3.19`),并配置环境变量确保两者能正确连接。接着,提供了一个 `docker-compose.yaml` 文件示例,包含 MongoDB 数据卷、健康检查及服务依赖配置,简化多容器管理。
354 2
|
4月前
|
存储 运维 资源调度
阿里云服务器经济型e实例解析:性能、稳定性与兼顾成本
阿里云经济型e云服务器以其高性价比、稳定可靠的性能以及灵活多样的配置选项,成为了众多企业在搭建官网时的首选。那么,阿里云经济型e云服务器究竟怎么样?它是否能够满足企业官网的搭建需求?本文将从性能表现、稳定性与可靠性、成本考虑等多个方面对阿里云经济型e云服务器进行深入剖析,以供大家参考选择。
288 37
|
4月前
|
存储 Java 计算机视觉
Java二维数组的使用技巧与实例解析
本文详细介绍了Java中二维数组的使用方法
105 15
|
5月前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
363 5
|
5月前
|
存储 网络协议 算法
【C语言】进制转换无难事:二进制、十进制、八进制与十六进制的全解析与实例
进制转换是计算机编程中常见的操作。在C语言中,了解如何在不同进制之间转换数据对于处理和显示数据非常重要。本文将详细介绍如何在二进制、十进制、八进制和十六进制之间进行转换。
300 5
|
6月前
|
存储 机器学习/深度学习 编解码
阿里云服务器计算型c8i实例解析:实例规格性能及使用场景和最新价格参考
计算型c8i实例作为阿里云服务器家族中的重要成员,以其卓越的计算性能、稳定的算力输出、强劲的I/O引擎以及芯片级的安全加固,广泛适用于机器学习推理、数据分析、批量计算、视频编码、游戏服务器前端、高性能科学和工程应用以及Web前端服务器等多种场景。本文将全面介绍阿里云服务器计算型c8i实例,从规格族特性、适用场景、详细规格指标、性能优势、实际应用案例,到最新的活动价格,以供大家参考。

推荐镜像

更多