修改DataFrame信息案例解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【4月更文挑战第9天】该文介绍了如何修改DataFrame信息,首先通过`pd.DataFrame()`将字典转换为DataFrame,然后利用`.loc[]`、`.iloc[]`和`.query()`方法修改特定条件的数据。示例中,更改了年龄大于30的值为31,更新了第1行和第3行数据,以及使用查询语句修改年龄大于30且城市为北京的记录。

修改DataFrame信息的案例解析如下:

首先,我们需要导入pandas库,并创建一个字典,其中键是列名,值是列中的数据。然后,我们可以使用pandas的DataFrame()函数将字典转换为DataFrame。

import pandas as pd

data = {
   
    '姓名': ['张三', '李四', '王五'],
    '年龄': [25, 30, 35],
    '城市': ['北京', '上海', '深圳']
}

df = pd.DataFrame(data)
print(df)

输出结果:

   姓名  年龄  城市
0  张三  25  北京
1  李四  30  上海
2  王五  35  深圳

接下来,我们可以使用DataFrame的loc[]方法来修改满足特定条件的数据。例如,我们将年龄大于30的人的年龄修改为31。

df.loc[df['年龄'] > 30, '年龄'] = 31
print(df)

输出结果:

   姓名  年龄  城市
0  张三  25  北京
1  李四  31  上海
2  王五  31  深圳

我们还可以使用DataFrame的iloc[]方法来修改满足特定位置条件的数据。例如,我们将第1行和第3行的数据修改为新的数据。

df.iloc[[0, 2], :] = [['赵六', 40, '广州'], ['孙七', 45, '杭州']]
print(df)

输出结果:

   姓名  年龄  城市
0  赵六  40  广州
1  李四  31  上海
2  孙七  45  杭州

此外,我们还可以使用DataFrame的query()方法来根据字符串表达式修改数据。例如,我们将年龄大于30且城市为北京的人的年龄修改为32。

df.query('年龄 > 30 and 城市 == "北京"').loc[:, '年龄'] = 32
print(df)

输出结果:

   姓名  年龄  城市
0  赵六  40  广州
1  李四  31  上海
2  孙七  45  杭州
相关文章
|
21天前
|
NoSQL Java Linux
《docker高级篇(大厂进阶):2.DockerFile解析》包括:是什么、DockerFile构建过程解析、DockerFile常用保留字指令、案例、小总结
《docker高级篇(大厂进阶):2.DockerFile解析》包括:是什么、DockerFile构建过程解析、DockerFile常用保留字指令、案例、小总结
193 75
|
11天前
|
文字识别 自然语言处理 算法
从多模态到精准洞察:深度解析多模态文件信息提取解决方案!
阿里云推出《多模态数据信息提取》解决方案,涵盖文本、图像、音频、视频等多种数据形式的自动化处理。本文从部署体验、功能验证到实际应用,全面解析该方案的能力与潜力,帮助开发者高效提取和整合复杂数据,提升工作效率...
37 3
从多模态到精准洞察:深度解析多模态文件信息提取解决方案!
|
20天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
7天前
|
数据采集 XML API
深入解析BeautifulSoup:从sohu.com视频页面提取关键信息的实战技巧
深入解析BeautifulSoup:从sohu.com视频页面提取关键信息的实战技巧
|
1月前
|
存储 监控 调度
云服务器成本优化深度解析与实战案例
本文深入探讨了云服务器成本优化的策略与实践,涵盖基本原则、具体策略及案例分析。基本原则包括以实际需求为导向、动态调整资源、成本控制为核心。具体策略涉及选择合适计费模式、优化资源配置、存储与网络配置、实施资源监控与审计、应用性能优化、利用优惠政策及考虑多云策略。文章还通过电商、制造企业和初创团队的实际案例,展示了云服务器成本优化的有效性,最后展望了未来的发展趋势,包括智能化优化、多云管理和绿色节能。
|
3月前
|
自然语言处理 数据可视化 前端开发
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
合合信息的智能文档处理“百宝箱”涵盖文档解析、向量化模型、测评工具等,解决了复杂文档解析、大模型问答幻觉、文档解析效果评估、知识库搭建、多语言文档翻译等问题。通过可视化解析工具 TextIn ParseX、向量化模型 acge-embedding 和文档解析测评工具 markdown_tester,百宝箱提升了文档处理的效率和精确度,适用于多种文档格式和语言环境,助力企业实现高效的信息管理和业务支持。
4112 5
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
|
2月前
|
存储 人工智能 自然语言处理
高效档案管理案例介绍:文档内容批量结构化解决方案解析
档案文件内容丰富多样,传统人工管理耗时低效。思通数科AI平台通过自动布局分析、段落与标题检测、表格结构识别、嵌套内容还原及元数据生成等功能,实现档案的高精度分块处理和结构化存储,大幅提升管理和检索效率。某历史档案馆通过该平台完成了500万页档案的数字化,信息检索效率提升60%。
|
2月前
|
Prometheus 监控 Cloud Native
实战经验:成功的DevOps实施案例解析
实战经验:成功的DevOps实施案例解析
88 6
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
103 2
|
20天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

推荐镜像

更多