Kubernetes 集群的监控与日志管理实践

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 【4月更文挑战第8天】在微服务架构日益普及的背景下,容器化技术成为支撑快速迭代和部署的关键。其中,Kubernetes 作为容器编排的事实标准,承载着服务的稳定性和扩展性。然而,随着集群规模的扩大,如何有效监控和管理集群状态、确保服务的高可用性成为一个挑战。本文将深入探讨 Kubernetes 集群的监控和日志管理策略,从系统资源利用到服务健康检查,再到日志的收集与分析,提供一个全面的运维视角,帮助运维人员构建一个健壮、可观察的 Kubernetes 环境。

随着云计算和微服,容器技术已经成为现代软件部署的标准方式之一。Kubernetes,作为一个开源的容器编排平台,以其强大的功能和灵活的扩展性赢得了业界的广泛认可。然而,随着集群规监控可以分为几个层面,包括节点层面的资源监控(如 CPU、内存、磁盘和网络)、od 层面的健康监控以及整个集群的性能监控。常用的集群监控工具有 Prometheus、cAdvisor 和 Node Exporter 等。Prometheus 是一个开源监控系统,通过配置静态的配置文件来抓取指标,并提供了强大的查询语言来检索时间序列数据。而 cAdvisor 则专注于容器级别的资源使用情况,可以提供 CPU、内存、文件系统和网络的实时数据。Node Exporter 用于收集节点级别的硬件和操作系统指标。结合 Grafana 这类可视化工具,可以使得监控数据的展示更加直观。

其次,日志管理对于故障排查和安全审计至关重要。在 Kubernetes 中,每个 Pod 都有可能因为更新或重启而迁移节点,因此传统的日志采集方式需要适应这种动态变化。Fluentd、Logstash 或者 Falco 等日志收集器可以帮助实现这一目标。它们能够根据 Kubernetes API 获取当前 Pod 的运行位置,并将日志聚合后发送到集中的存储系统中,例如 Elasticsearch。此外,为了更高效地处理和查询日志,ELK(Elasticsearch, Logstash, Kibana)栈被广泛采用。

除了上述提到的工具和方法,我们还需要考虑监控和日志系统的高可用性和故障转移机制。这意味着我们需要对这些系统本身也进行监控,确保它们能够在出现问题时及时发出警报,并且能够自动恢复。

最后,为了更好地管理和维护 Kubernetes 集群,我们还需要定期进行性能测试和压力测试。这些测试可以帮助我们发现潜在的瓶颈和问题,从而优化系统配置和资源分配。同时,通过持续集成和持续部署(CI/CD)流程自动化这些测试,可以确保我们的集群始终处于最佳状态。

综上所述,Kubernetes 集群的监控与日志管理是一个涉及多方面的复杂工程。通过合理选择工具、配置和使用最佳实践,我们可以构建出一个健壮、可观察且易于管理的 Kubernetes 环境,为运维团队提供强大的支持,同时也为业务的稳定性和扩展性打下坚实的基础。

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
存储 运维 开发工具
警惕日志采集失败的 6 大经典雷区:从本地管理反模式到 LoongCollector 标准实践
本文探讨了日志管理中的常见反模式及其潜在问题,强调科学的日志管理策略对系统可观测性的重要性。文中分析了6种反模式:copy truncate轮转导致的日志丢失或重复、NAS/OSS存储引发的采集不一致、多进程写入造成的日志混乱、创建文件空洞释放空间的风险、频繁覆盖写带来的数据完整性问题,以及使用vim编辑日志文件导致的重复采集。针对这些问题,文章提供了最佳实践建议,如使用create模式轮转日志、本地磁盘存储、单线程追加写入等方法,以降低日志采集风险,提升系统可靠性。最后总结指出,遵循这些实践可显著提高故障排查效率和系统性能。
551 20
|
5月前
|
存储 NoSQL Redis
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 +  无锁架构 +  EDA架构  + 异步日志 + 集群架构
|
5月前
|
存储 负载均衡 测试技术
ACK Gateway with Inference Extension:优化多机分布式大模型推理服务实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with Inference Extension组件,在Kubernetes环境中为多机分布式部署的LLM推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
6月前
|
Prometheus Kubernetes 监控
Kubernetes监控:Prometheus与AlertManager结合,配置邮件告警。
完成这些步骤之后,您就拥有了一个可以用邮件通知你的Kubernetes监控解决方案了。当然,所有的这些配置都需要相互照应,还要对你的Kubernetes集群状况有深入的了解。希望这份指南能帮助你创建出适合自己场景的监控系统,让你在首次发现问题时就能做出响应。
276 22
|
6月前
|
存储 人工智能 Kubernetes
ACK Gateway with AI Extension:面向Kubernetes大模型推理的智能路由实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with AI Extension组件,在Kubernetes环境中为大语言模型(LLM)推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
6月前
|
存储 人工智能 物联网
ACK Gateway with AI Extension:大模型推理的模型灰度实践
本文介绍了如何使用 ACK Gateway with AI Extension 组件在云原生环境中实现大语言模型(LLM)推理服务的灰度发布和流量分发。该组件专为 LLM 推理场景设计,支持四层/七层流量路由,并提供基于模型服务器负载感知的智能负载均衡能力。通过自定义资源(CRD),如 InferencePool 和 InferenceModel,可以灵活配置推理服务的流量策略,包括模型灰度发布和流量镜像。
|
7月前
|
Kubernetes 监控 Serverless
基于阿里云Serverless Kubernetes(ASK)的无服务器架构设计与实践
无服务器架构(Serverless Architecture)在云原生技术中备受关注,开发者只需专注于业务逻辑,无需管理服务器。阿里云Serverless Kubernetes(ASK)是基于Kubernetes的托管服务,提供极致弹性和按需付费能力。本文深入探讨如何使用ASK设计和实现无服务器架构,涵盖事件驱动、自动扩展、无状态设计、监控与日志及成本优化等方面,并通过图片处理服务案例展示具体实践,帮助构建高效可靠的无服务器应用。
|
6月前
|
SQL 存储 自然语言处理
让跨 project 联查更轻松,SLS StoreView 查询和分析实践
让跨 project 联查更轻松,SLS StoreView 查询和分析实践
114 1
|
7月前
|
监控 Kubernetes Cloud Native
基于阿里云容器服务Kubernetes版(ACK)的微服务架构设计与实践
本文介绍了如何基于阿里云容器服务Kubernetes版(ACK)设计和实现微服务架构。首先概述了微服务架构的优势与挑战,如模块化、可扩展性及技术多样性。接着详细描述了ACK的核心功能,包括集群管理、应用管理、网络与安全、监控与日志等。在设计基于ACK的微服务架构时,需考虑服务拆分、通信、发现与负载均衡、配置管理、监控与日志以及CI/CD等方面。通过一个电商应用案例,展示了用户服务、商品服务、订单服务和支付服务的具体部署步骤。最后总结了ACK为微服务架构提供的强大支持,帮助应对各种挑战,构建高效可靠的云原生应用。
|
8月前
|
存储 运维 监控
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
中信银行信用卡中心每日新增日志数据 140 亿条(80TB),全量归档日志量超 40PB,早期基于 Elasticsearch 构建的日志云平台,面临存储成本高、实时写入性能差、文本检索慢以及日志分析能力不足等问题。因此使用 Apache Doris 替换 Elasticsearch,实现资源投入降低 50%、查询速度提升 2~4 倍,同时显著提高了运维效率。
337 3
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践

推荐镜像

更多