【并发编程】Java线程,如何创建线程

简介: 【并发编程】Java线程,如何创建线程

主要知识点:

创建和运行线程

查看线程

线程的相关API

线程的状态

一、 创建和运行线程

1.1使用 Thread

// 创建线程对象
Thread t = new Thread() {
 public void run() {
 // 要执行的任务
 }
};
// 启动线程
t.start();

例如:

// 构造方法的参数是给线程指定名字,推荐
Thread t1 = new Thread("t1") {
 @Override
 // run 方法内实现了要执行的任务
 public void run() {
 log.debug("hello");
 }
};
t1.start();

1.2 使用 Runnable 配合 Thread

把【线程】和【任务】(要执行的代码)分开

  • Thread 代表线程
  • Runnable 可运行的任务(线程要执行的代码)
Runnable runnable = new Runnable() {
 public void run(){
 // 要执行的任务
 }
};
// 创建线程对象
Thread t = new Thread( runnable );
// 启动线程
t.start();

例如:

// 创建任务对象
Runnable task2 = new Runnable() {
 @Override
 public void run() {
 log.debug("hello");
 }
};
// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t2 = new Thread(task2, "t2");
t2.start();

lambda 精简代码

// 创建任务对象
Runnable task2 = () -> log.debug("hello");
// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t2 = new Thread(task2, "t2");
t2.start();

1.3 Thread 与 Runnable 的关系

  • Thread是把线程和任务合并在了一起,Runnable是把线程和任务分开了
  • 用 Runnable 更容易与线程池等高级 API 配合
  • 用 Runnable 让任务类脱离了 Thread 继承体系,更灵活

1.4 FutureTask 配合 Thread

FutureTask 能够接收 Callable 类型的参数,用来处理有返回结果的情况

// 创建任务对象
FutureTask<Integer> task3 = new FutureTask<>(() -> {
 log.debug("hello");
 return 100;
});
// 参数1 是任务对象; 参数2 是线程名字,推荐
new Thread(task3, "t3").start();
// 主线程阻塞,同步等待 task 执行完毕的结果
Integer result = task3.get();
log.debug("结果是:{}", result);

二、 查看进程线程的方法

windows服务

  • 通过任务管理器可以查看进程和线程数,也可以用来杀死进程
  • tasklist 查看进程
  • taskkill 杀死进程

linux系统服务

  • ps -fe 查看所有进程
  • ps -fT -p 查看某个进程(PID)的所有线程
  • kill 杀死进程
  • top 按大写 H 切换是否显示线程
  • top -H -p 查看某个进程(PID)的所有线程

查看java服务进程

  • jps 命令查看所有 Java 进程
  • jstack 查看某个 Java 进程(PID)的所有线程状态
  • jconsole 来查看某个 Java 进程中线程的运行情况(图形界面)

三、 多线程运行核心概念

栈与栈帧

Java Virtual Machine Stacks (Java 虚拟机栈)

我们都知道 JVM 中由堆、栈、方法区所组成,其中栈内存是给谁用的呢?其实就是线程,每个线程启动后,虚拟机就会为其分配一块栈内存。

  • 每个栈由多个栈帧(Frame)组成,对应着每次方法调用时所占用的内存
  • 每个线程只能有一个活动栈帧,对应着当前正在执行的那个方法

线程上下文切换(Thread Context Switch)

因为以下一些原因导致 cpu 不再执行当前的线程,转而执行另一个线程的代码

  • 线程的 cpu 时间片用完
  • 垃圾回收
  • 有更高优先级的线程需要运行
  • 线程自己调用了 sleep、yield、wait、join、park、synchronized、lock 等方法

当 Context Switch 发生时,需要由操作系统保存当前线程的状态,并恢复另一个线程的状态,Java 中对应的概念就是程序计数器(Program Counter Register),它的作用是记住下一条 jvm 指令的执行地址,是线程私有的

  • 状态包括程序计数器、虚拟机栈中每个栈帧的信息,如局部变量、操作数栈、返回地址等
  • Context Switch 频繁发生会影响性能

四、 线程的常见API

方法名 static 功能说明 注意
start() 启动一个新线程,在新的线程运行 run 方法中的代码 启动一个新线程,在新的线程运行 run 方法中的代码start 方法只是让线程进入就绪,里面代码不一定立刻运行(CPU 的时间片还没分给它)。每个线程对象的start方法只能调用一次,如果调用了多次会出现IllegalThreadStateException
run() 新线程启动后会调用的方法 如果在构造 Thread 对象时传递了 Runnable 参数,则线程启动后会调用 Runnable 中的 run 方法,否则默认不执行任何操作。但可以创建 Thread 的子类对象,来覆盖默认行为
join() 等待线程运行结束
join(long n) 等待线程运行结束,最多等待 n 毫秒
getId() 获取线程长整型的 id id唯一
getName() 获取线程名
setName(String) 修改线程名
getPriority() 获取线程优先级
setPriority(int) 修改线程优先级 java中规定线程优先级是1~10 的整数,较大的优先级能提高该线程被 CPU 调度的机率
getState() 获取线程状态 Java 中线程状态是用 6 个 enum 表示,分别为:NEW, RUNNABLE, BLOCKED, WAITING, TIMED_WAITING, TERMINATED
isInterrupted() 判断是否被打断 不会清除打断标记
isAlive() 线程是否存活(还没有运行完毕)
interrupt() 打断线程 如果被打断线程正在 sleep,wait,join 会导致被打断的线程抛出 InterruptedException,并清除 打断标记 ;如果打断的正在运行的线程,则会设置 打断标记 ;park 的线程被打断,也会设置 打断标记
interrupted() static 判断当前线程是否被打断 会清除打断标记
currentThread() static 获取当前正在执行的线程
sleep(long n) static 让当前执行的线程休眠n毫秒,休眠时让出 cpu 的时间片给其它线程
yield() static 提示线程调度器让出当前线程对CPU的使用 主要是为了测试和调试

五、 线程的状态

操作系统层面

  • 【初始状态】仅是在语言层面创建了线程对象,还未与操作系统线程关联
  • 【可运行状态】(就绪状态)指该线程已经被创建(与操作系统线程关联),可以由 CPU 调度执行
  • 【运行状态】指获取了 CPU 时间片运行中的状态
    当 CPU 时间片用完,会从【运行状态】转换至【可运行状态】,会导致线程的上下文切换
  • 【阻塞状态】
    如果调用了阻塞 API,如 BIO 读写文件,这时该线程实际不会用到 CPU,会导致线程上下文切换,进入【阻塞状态】
    等 BIO 操作完毕,会由操作系统唤醒阻塞的线程,转换至【可运行状态】
    与【可运行状态】的区别是,对【阻塞状态】的线程来说只要它们一直不唤醒,调度器就一直不会考虑调度它们
  • 【终止状态】表示线程已经执行完毕,生命周期已经结束,不会再转换为其它状态

Java API 层面

根据 Thread.State 枚举,可分为六种状态分别为:

NEW 新建状态

RUNNABLE 可运行状态(对应操作系统层面的可运行状态、运行状态和阻塞状态)

BLOCKED 阻塞状态

WAITING 无限等待状态

TIMED_WAITING 计时等待状态

TERMINATED 消亡状态


相关文章
|
1月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
36 0
|
7天前
|
安全 Java 程序员
面试直击:并发编程三要素+线程安全全攻略!
并发编程三要素为原子性、可见性和有序性,确保多线程操作的一致性和安全性。Java 中通过 `synchronized`、`Lock`、`volatile`、原子类和线程安全集合等机制保障线程安全。掌握这些概念和工具,能有效解决并发问题,编写高效稳定的多线程程序。
47 11
|
15天前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
71 17
|
25天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
11天前
|
缓存 安全 算法
Java 多线程 面试题
Java 多线程 相关基础面试题
|
27天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
27天前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
|
28天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
54 3
|
28天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
150 2
|
1月前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
51 6