mysql索引优化,更好的创建和使用索引

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: mysql索引优化,更好的创建和使用索引

我们如何更好的创建和使用索引呢?

大家记住以下这个8个方案就OK啦。

1、只为用于搜索、排序或分组的列创建索引

我们只为出现在WHERE子句中的列、连接子句中的连接列,或者出现在ORDER BY或GROUP BY子句中的列创建索引。仅出现在查询列表中的列就没必要建立索引了。

2、考虑索引列中不重复值的个数

我们知道在通过二级索引+回表的方式执行查询时,某个扫描区间中包含的二级索引记录数量越多,就会导致回表操作的代价越大。==我们在为某个列创建索引时,需要考虑该列中不重复值的个数占全部记录条数的比例。==如果比例太低,则说明该列包含过多重复值,那么在通过二级索引+回表的方式执行查询时,就有可能执行太多的回表,导致性能下降。

对二级索引+回表的这种查询方式还不是太了解的同学请看这篇文章

mysql 回表的代价(InnoDB)

3、索引列的类型尽量小

在定义表结构时,要显示的指定列的类型。以整数类型为例,有TINYINT、MEDIUMINT、INT、BIGINT这几种,他们占用的存储空间大小依次递增。

如果想对某个整数类型的列建立索引,在表示的整数范围允许的情况下,尽量让索引列使用较小的类型,如果能使用INT就不使用BIGINT,因为数据类型越小,索引占用的存储空间就越少,在一个数据页就能存放更多的记录,磁盘IO的性能损耗也就越小,一次页面IO可以将更多的记录加载到内存。

4、为列前缀建立索引

我们知道一个字符串其实是由若干个字符构成的,如果在mysql中使用utf8字符集来存储字符串,则需要1~3个字节来编码一个字符。假如字符串很长,那么存储这个字符串就需要占用很大的存储空间。在需要为这个字符串所在的列建立索引的时候,就意味着在对应的B+树中的记录中,需要把该列的完整的字符串记录下来。字符串越长,在索引中占用的空间也就越大。

其实索引列的字符串前缀也是排好序的,设计索引的人员提出了一个方案,只将字符串的前几个字符存放到索引中,也就是说在二级索引的记录中只保留字符串的前几个字符。创建语句如下:

ALTER TABLE demo_table ADD INDEX idx_key1(key1(10)); //创建的字符串索引只保留前10个字符
5、覆盖索引

为了彻底告别回表操作带来的性能损耗,建议最好在查询的列表中只包含索引列,例如:

SELECT key1,id FROM demo_table WHERE key1 > 'a' AND key1 < 'c';

由于我们只查询 key1,id列的值,所以在使用idx_key1索引来扫描(‘a’,‘c’)区间中的二级索引记录时,可以直接从获取到的二级索引记录中读出key1列和id列的值,而不需要执行回表操作,我们把这种索引中已经包含所有需要读取的列的查询方式称为覆盖索引。

排序操作也优先使用覆盖索引进行查询,比如:

SELECT key1 FROM demo_table ORDER BY key1;

如果我们的业务中没有必要使用索引列以外的列,或者没有必要使用全部的列,我们最好比需要的列放到查询中,而不是用 select * 代替。

6、让索引列以列名的形式在搜索条件中单独出现

如下的方式并不会使用到索引,而是全表扫描:

SELECT * FROM demo_table WHERE key2 * 2 < 4;

如下的方式可以使用到索引:

SELECT * FROM demo_table WHERE key2 < 4 * 2;

所以,如果想让某个查询使用索引来执行,请让索引列以列名的形式单独出现在搜索条件中。

7、新插入记录时主键大小对效率的影响

我们知道,对应InnoDB存储引擎来说,在没有显示的创建索引时,表中的数据实际上是存储在聚簇索引的叶子节点中,而且B+树的每一层数据页以及页面中的记录都是按主键值从小到大排序的如果新插入的主键值是依次增大的话,则每插满一个数据页就换到下一个数据页继续插入,如果新插入的主键值忽大忽小,就很麻烦了。

假如某个数据页的聚簇索引的记录已经满了,他的存储主键值在1-100之间, 我们再插入一条主键值为9的记录,这个时候新插入的记录会到哪里?存储引擎会把当前页面分裂成两个页面,把本页中的一些记录移动到新页中。页面分裂就意味着性能损耗

所以我们一般都把表中的主键设置为自动递增 AUTO_INCREMENT

8、冗余和重复索引

比如某个列是在某个组合索引中,然后我们又为这个列建立了一个单独的索引,这个是没有必要的,或者我们为主键列单独建立了索引,也是没有必要的,因为主键本来就自带索引。

创作不易,点个赞或者加个收藏吧~👍

最后的最后送大家一句话

白驹过隙,沧海桑田

与君共勉


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
3天前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
24天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
7天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
11天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
37 3
|
14天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
37 1
|
21天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
54 9
|
15天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
78 1
|
21天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
48 5
|
26天前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
54 1
|
26天前
|
存储 关系型数据库 MySQL
优化 MySQL 的锁机制以提高并发性能
【10月更文挑战第16天】优化 MySQL 锁机制需要综合考虑多个因素,根据具体的应用场景和需求进行针对性的调整。通过不断地优化和改进,可以提高数据库的并发性能,提升系统的整体效率。
47 1