深度学习第2天:RNN循环神经网络

简介: 深度学习第2天:RNN循环神经网络



介绍

RNN也叫循环神经网络,普通的神经网络层的输入都是上一层的输出,而循环神经网络会在RNN层循环指定次数,这样的特点使得RNN在处理序列数据上表现得很好,因为它可以更好地记住前后文的关系

记忆功能对比展现

任务描述

我们有一段数字序列,我们训练一个神经网络,使得该模型能通过任意连在一起的两个数,判断出第三个数

我们先定义数字序列

data_sequence = [1, 3, 5, 2, 4, 9, 7, 6, 8]

导入库

import numpy as np
from keras.models import Sequential
from keras.layers import SimpleRNN, Dense

处理数据

# 准备训练数据,使用前两个数字作为输入,预测第三个数字,以此类推
X = []
y = []
 
for i in range(len(data_sequence)-2):
    X.append([data_sequence[i], data_sequence[i+1]])
    y.append(data_sequence[i+2])
 
X = np.array(X)
y = np.array(y)
 
# 转换数据形状以适应RNN
X = X.reshape((X.shape[0], X.shape[1], 1))

我们打印X,得到下图结果,结果竖向排列,无法展示完全,X的形状为(7, 2, 1)(两两排列有七组数据,每组数据两个特征,每个特征单独输入)

打印y

为每两个数的第三个数

前馈神经网络

接下来我们定义一个简单的前馈神经网络

model = Sequential()
model.add(Dense(500, input_dim=2))
model.add(Dense(1))

该模型有三层,输入层(没有在这里定义,我们等下输入的数据就充当这一层),一个500个神经元的线性层(输入维度为二),一个输出维度为1的输出层(输入维度为上一层神经元的个数,即500)

循环神经网络

定义一个循环神经网络

# 创建RNN模型
model = Sequential()
model.add(SimpleRNN(500, input_shape=(2, 1)))
model.add(Dense(1))

该模型有三层,输入层(没有在这里定义,我们等下输入的数据就充当这一层),一个500个神经元的RNN层(input_shape=(2,1)的意思是时间步为2,每个时间步有一个数据,可以理解时间步为网络记忆的长度),一个输出维度为1的输出层(输入维度为上一层神经元的个数,即500)

编译与训练模型

# 编译模型
model.compile(optimizer='adam', loss='mse')
 
# 训练模型
model.fit(X, y, epochs=200, batch_size=1, verbose=2)
  • 编译阶段设置模型的优化器为adam,损失函数为mse
  • 训练部分设置模型训练数据(X,y),设置训练回合为200次,批次为1,即一次输入一组数据,verbose决定了是否打印训练过程中的信息。verbose=2 表示打印每个 epoch 的信息,包括损失值和其他指标。verbose=0表示不打印任何信息,verbose=1表示打印进度条。

模型预测

接下来看看在相同神经元数量和相同训练批次上谁的效果更好吧

# 使用模型进行预测
input_data = np.array([[data_sequence[2], data_sequence[3]]])
predicted_value = model.predict(input_data)[0, 0]
 
# 打印预测结果
print(f"输入序列: {data_sequence[2:4]},预测下一个数字: {predicted_value}")

我们训练后使用5, 2进行预测,查看原始数据,我们知道下一个数字应该是4,让我们看看两个模型运行的结果吧

前馈神经网络

循环神经网络

可以看到循环神经网络的效果更优

可能的问题

梯度消失

当在网络的反向传播过程中梯度逐渐减小到几乎为零时,就会出现梯度消失问题。这使得网络难以学习到远距离时间步的依赖关系,因为在反向传播时,较早时间步的信息无法有效传递给较晚时间步。

梯度爆炸

相反,梯度爆炸是指在反向传播中,梯度变得非常大,这可能导致权重更新变得非常大,模型不稳定。这可能导致数值溢出和无法收敛。

这两个问题在神经网络中都会出现,只是由于RNN的结构,梯度消失与梯度爆炸问题会更加显著

其他的循环神经网络

  • LSTM,LSTM引入了三个门(门是一种控制信息流动的机制)来控制信息的输入、输出和遗忘。
  • GRU,GRU是对LSTM的一种简化版本,它只包含两个门:更新门(Update Gate)和重置门(Reset Gate)。

这两种循环神经网络能有效地应对梯度消失和梯度爆炸的问题,这里先做了解,之后会具体介绍

结语

  • 循环神经网络是深度学习中一种重要的结构,一般用来处理文本,语音的序列数据
  • 我们通过一个比较直观地感受到了RNN的记忆功能
  • 梯度消失与梯度爆炸问题在RNN中更加显著

感谢阅读,觉得有用的话就订阅下本专栏吧

相关文章
|
3月前
|
机器学习/深度学习 人工智能 运维
网管不再抓头发:深度学习教你提前发现网络事故
网管不再抓头发:深度学习教你提前发现网络事故
80 2
|
2月前
|
机器学习/深度学习 人工智能 算法
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
232 68
|
7月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
352 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
5月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
129 8
|
6月前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
6月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
364 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
6月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
7月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
522 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
机器学习/深度学习
【从零开始学习深度学习】33.语言模型的计算方式及循环神经网络RNN简介
【从零开始学习深度学习】33.语言模型的计算方式及循环神经网络RNN简介
【从零开始学习深度学习】33.语言模型的计算方式及循环神经网络RNN简介
|
11月前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
1056 2

热门文章

最新文章