m基于深度学习的32QAM调制解调系统频偏估计和补偿算法matlab仿真

简介: MATLAB 2022a仿真实现了32-QAM系统的频偏估计与补偿。通过比较传统方法(如循环谱法和最大似然)与深度学习方法,展示了后者如何利用CNN直接预测频偏。深度学习模型包括信号预处理、特征提取和频偏预测,采用均方误差损失函数进行训练优化。核心程序生成信号,应用AWGN,然后用深度学习估计和补偿频偏,最终比较了有无补偿的误码率性能。

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要
在无线通信系统中,接收端收到的信号由于各种原因可能会存在载波频率偏差(Frequency Offset, FO)。在32-QAM系统中,频偏会导致星座图旋转和幅度失真,严重影响解调性能。因此,准确快速地估计并补偿频偏至关重要。

频偏估计的传统方法
传统方法如循环谱法(Cyclic Spectrum Estimation)、最大似然估计算法等可以用来估计FO。例如,基于接收信号的循环自相关函数(ACF)可估计FO:

6.png

深度学习方法的应用
深度学习方法引入了新的频偏估计思路,它可以通过训练神经网络来直接从接收到的已调制信号中学习并预测频偏。一种可能的方法是构建一个卷积神经网络(CNN)作为估计器:

信号预处理:首先,对接收信号进行必要的预处理,如去噪、同步等操作。

特征提取:使用CNN或者其他结构对预处理后的信号进行特征提取,该步骤可以表示为:

H(x)→f.

其中,x 是接收信号向量,H(⋅) 是特征提取网络,f 是提取出的特征向量。

频偏预测:随后,将特征向量输入到一个全连接层或回归层进行频偏预测:

estg(f)→fest​

这里,g(⋅) 是频偏预测网络,fest​ 是估计出的频偏值。

损失函数:训练过程中,使用均方误差(MSE)或其他适当的损失函数来量化预测频偏与真实频偏之间的差异:

∣2L(fest​,ftrue​)=∣∣fest​−ftrue​∣∣2

训练与优化:通过反向传播算法更新网络权重,最小化损失函数,使网络能更准确地估计频偏。

频偏补偿:一旦估计出频偏,可通过数字信号处理技术进行补偿。对于连续时间信号,补偿公式大致如下:

7.png

对于离散信号,在执行解调前,可以通过频域校正或时域插值的方式完成频偏补偿。

   基于深度学习的32-QAM频偏估计和补偿方法,能够充分利用神经网络强大的非线性拟合能力,有效应对复杂的无线环境变化。

3.MATLAB核心程序
```for i = 1:length(SNR)
i
for j = 1:10
[i,j]
%产生信号
signal = round(rand(1,LEN));
signal_modulated1 = Modulator(signal,K);
signal_receive1 = awgn(signal_modulated1,SNR(i),'measured');
signal_receive2 = signal_receive1.exp(sqrt(-1)2piOFFSET*t );

    offset2   = func_phase_est_dnn(signal_receive2);%基于深度学习的相位估计

    RR        = signal_receive2.*exp(-sqrt(-1)*2*pi*mean2(offset2)*t);
    %加相位补偿
    output    = DeModulator(RR,K);

    msgr      = ones(size(output));
    idx       = find(output<=0);
    msgr(idx) = 0;

    len         = length(find(signal==msgr));
    errrate(i,j)= 1-len/length(signal);
    %没有相位补偿
    output2     = DeModulator(signal_receive2,K);

    msgr2       = ones(size(output2));
    idx2        = find(output2<=0);
    msgr2(idx2) = 0;

    len2      = length(find(signal==msgr2));
    errrate2(i,j)= 1-len2/length(signal);

end

end

figure;
semilogy(SNR,mean(errrate2,2),'b-o');
hold on
semilogy(SNR,mean(errrate,2),'r-s');
grid on
xlabel('SNR');
ylabel('误码率');
legend('32QAM无频偏补偿误码率','32QAM频偏补偿误码率');

```

相关文章
|
16天前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
68 21
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
16天前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
60 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
16天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
44 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
12天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
24 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
4天前
|
算法 安全
分别使用OVP-UVP和OFP-UFP算法以及AFD检测算法实现反孤岛检测simulink建模与仿真
本课题通过Simulink建模与仿真,实现OVP-UVP、OFP-UFP算法及AFD检测算法的反孤岛检测。OVP-UVP基于电压幅值变化,OFP-UFP基于频率变化,而AFD则通过注入频率偏移信号来检测孤岛效应,确保电力系统安全稳定运行。系统使用MATLAB 2013b进行建模与仿真验证。
|
4天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
12天前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
32 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
3天前
|
算法 数据安全/隐私保护
星座图整形技术在光纤通信中的matlab性能仿真,分别对比标准QAM,概率整形QAM以及几何整形QAM
本文介绍了现代光纤通信系统中的星座图整形技术,包括标准QAM、概率整形QAM和几何整形QAM三种方法,并对比了它们的原理及优缺点。MATLAB 2022a仿真结果显示了不同技术的效果。标准QAM实现简单但效率有限;概率整形QAM通过非均匀符号分布提高传输效率;几何整形QAM优化星座点布局,增强抗干扰能力。附带的核心程序代码展示了GMI计算过程。
11 0
|
9天前
|
机器学习/深度学习 自然语言处理 搜索推荐
探索深度学习与自然语言处理(NLP)在智能客服系统中的创新应用
探索深度学习与自然语言处理(NLP)在智能客服系统中的创新应用
32 0
|
15天前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。

热门文章

最新文章

下一篇
无影云桌面