ClickHouse(05)ClickHouse数据类型详解

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: ClickHouse是一款分析型数据库,支持基础、复合和特殊数据类型。基础类型包括数值(Int、Float、Decimal)、字符串(String、FixedString、UUID)和时间(DateTime、DateTime64、Date)类型。数值类型如Int8-64和Float32-64,Decimal提供高精度计算。字符串中的FixedString有固定长度,UUID作为主键。时间类型最高精度到秒。复合类型有数组、元组、枚举和嵌套,其中数组和元组允许不同数据类型,枚举节省空间,嵌套类型是多维数组结构。特殊类型如Nullable表示可为空,Domain封装IPv4和IPv6。

ClickHouse属于分析型数据库,ClickHouse提供了许多数据类型,它们可以划分为基础类型、复合类型和特殊类型。其中基础类型使ClickHouse具备了描述数据的基本能力,而另外两种类型则使ClickHouse的数据表达能力更加丰富立体。

基础类型

基础类型只有数值、字符串和时间三种类型,没有Boolean类型,但可以使用整型的0或1替代。

数值类型

数值类型分为整数、浮点数和定点数三类,接下来分别进行说明。

Int

在普遍观念中,常用Tinyint、Smallint、Int和Bigint指代整数的不同取值范围。而ClickHouse则直接使用Int8、Int16、Int32和Int64指代4种大小的Int类型,其末尾的数字正好表明了占用字节的大小(8位=1字节)。

ClickHouseInt数据类型

ClickHouse无符号Int数据类型

Float

与整数类似,ClickHouse直接使用Float32和Float64代表单精度浮点数以及双精度浮点数。在使用浮点数的时候,要意识到它是有限精度的。对Float32和Float64写入超过有效精度的数值,结果就会出现数据误差,会被截断。

ClickHouseFloat数据类型

另外,ClickHousae对于正无穷、负无穷、以及非数值类型的表示。

  • 正无穷:inf
  • 负无穷:-inf
  • 非数值类型:

Decimal

要更高精度的数值运算,需要使用定点数。ClickHouse提供了Decimal32、Decimal64和Decimal128三种精度的定点数。可以通过两种形式声明定点:简写方式有Decimal32(S)、Decimal64(S)、Decimal128(S)三种,原生方式为Decimal(P,S),其中:

  • P代表精度,决定总位数(整数部分+小数部分),取值范围是1~38;
  • S代表规模,决定小数位数,取值范围是0~P。

ClickHouseDecimal数据类型

字符串类型

字符串类型可以细分为String、FixedString和UUID三类。

String

字符串由String定义,长度不限。因此在使用String的时候无须声明大小。它完全代替了传统意义上数据库的Varchar、Text、Clob和Blob等字符类型。String类型不限定字符集,因为它根本就没有这个概念,所以可以将任意编码的字符串存入其中。

FixedString

FixedString类型和传统意义上的Char类型有些类似,对于一些字符有明确长度的场合,可以使用固定长度的字符串。定长字符串通过FixedString(N)声明,其中N表示字符串长度。但与Char不同的是,FixedString使用null字节填充末尾字符,而Char通常使用空格填充。比如在下面的例子中,字符串‘abc’虽然只有3位,但长度却是5,因为末尾有2位空字符填充。

UUID

UUID是一种数据库常见的主键类型,在ClickHouse中直接把它作为一种数据类型。UUID共有32位,它的格式为8-4-4-4-12。如果一个UUID类型的字段在写入数据时没有被赋值,则会依照格式使用0填充。

时间类型

时间类型分为DateTime、DateTime64和Date三类。ClickHouse目前没有时间戳类型。时间类型最高的精度是秒,也就是说,如果需要处理毫秒、微秒等大于秒分辨率的时间,则只能借助UInt类型实现。

DateTime

DateTime类型包含时、分、秒信息,精确到秒。

DateTime64

DateTime64可以记录亚秒,它在DateTime之上增加了精度的设置。

Date

Date类型不包含具体的时间信息,只精确到天。

复合类型

ClickHouse还提供了数组、元组、枚举和嵌套四类复合类型。

数组Array

数组有两种定义形式,常规方式array(T),或者简写方式[T]。在同一个数组内可以包含多种数据类型,例如数组[1,2.0]是可行的。但各类型之间必须兼容,例如数组[1,'2']则会报错。

在查询时并不需要主动声明数组的元素类型。因为ClickHouse的数组拥有类型推断的能力,推断依据:以最小存储代价为原则,即使用最小可表达的数据类型。

--常规定义方式
SELECT array(1, 2) as a , toTypeName(a)
┌─a───┬─toTypeName(array(1, 2))─┐
│ [1,2] │ Array(UInt8)              │
└─────┴────────────────┘

--简写定义方式
SELECT [1, 2]

--建表时数据类型定义
CREATE TABLE Array_TEST (
    c1 Array(String)
) engine = Memory

元组Tuple

元组类型由1~n个元素组成,每个元素之间允许设置不同的数据类型,且彼此之间不要求兼容。元组同样支持类型推断,其推断依据仍然以最小存储代价为原则。与数组类似,元组也可以使用两种方式定义,常规方式tuple(T),或者简写方式(T)。

--常规定义方式
SELECT tuple(1,'a',now()) AS x, toTypeName(x)
┌─x─────────────────┬─toTypeName(tuple(1, 'a', now()))─┐
│ (1,'a','2019-08-28 21:36:32') │ Tuple(UInt8, String, DateTime)    │
└───────────────────┴─────────────────────┘

--简写定义方式
SELECT (1,'a',now()) AS x, toTypeName(x)
┌─x─────────────────┬─toTypeName(tuple(1, 'a', now()))─┐
│ (1,'a','2019-08-28 21:36:32') │ Tuple(UInt8, String, DateTime)    │
└───────────────────┴─────────────────────┘

--建表时元组类型定义
CREATE TABLE Array_TEST (
    c1 Array(String)
) engine = Memory

枚举Enum

ClickHouse支持枚举类型,这是一种在定义常量时经常会使用的数据类型。ClickHouse提供了Enum8和Enum16两种枚举类型,它们除了取值范围不同之外,别无二致。枚举固定使用(String:Int)Key/Value键值对的形式定义数据,所以Enum8和Enum16分别会对应(String:Int8)和(String:Int16)。

在定义枚举集合的时候,有几点需要注意。首先,Key和Value是不允许重复的,要保证唯一性。其次,Key和Value的值都不能为Null,但Key允许是空字符串。在写入枚举数据的时候,只会用到Key字符串部分。

数据在写入的过程中,会对照枚举集合项的内容逐一检查。如果Key字符串不在集合范围内则会抛出异常。

为什么还需要专门的枚举类型呢?这是出于性能的考虑。因为枚举定义中的Key属于String类型,但在后续对枚举的所有操作中(包括排序、分组、去重、过滤等),会使用Int类型的Value值。

--枚举类型定义
CREATE TABLE Enum_TEST (
    c1 Enum8('ready' = 1, 'start' = 2, 'success' = 3, 'error' = 4)
) ENGINE = Memory;

--枚举类型插入
INSERT INTO Enum_TEST VALUES('ready');
INSERT INTO Enum_TEST VALUES('start');

嵌套Nested

嵌套类型,顾名思义是一种嵌套表结构。一张数据表,可以定义任意多个嵌套类型字段,但每个字段的嵌套层级只支持一级,即嵌套表内不能继续使用嵌套类型。对于简单场景的层级关系或关联关系,使用嵌套类型也是一种不错的选择。

--创建Nested语句
CREATE TABLE nested_test (
    name String,
    age  UInt8 ,
    dept Nested(
        id UInt8,
        name String
    )
) ENGINE = Memory;

ClickHouse的嵌套类型和传统的嵌套类型不相同,导致在初次接触它的时候会让人十分困惑。以上面这张表为例,如果按照它的字面意思来理解,会很容易理解成nested_test与dept是一对一的包含关系,其实这是错误的。

嵌套类型本质是一种多维数组的结构。嵌套表中的每个字段都是一个数组,并且行与行之间数组的长度无须对齐,在同一行数据内每个数组字段的长度必须相等。

插入数据时候每一个nestd字段要需要一个数组。

--插入数据
INSERT INTO nested_test VALUES ('bruce' , 30 , [10000,10001,10002], ['研发部','技术支持中心','测试部']);
--行与行之间,数组长度无须对齐
INSERT INTO nested_test VALUES ('bruce' , 30 , [10000,10001], ['研发部','技术支持中心']); 


--查询数据
SELECT name, dept.id, dept.name FROM nested_test
┌─name─┬─dept.id──┬─dept.name─────────────┐
│ bruce │ [16,17,18]['研发部','技术支持中心','测试部'] │
└────┴───────┴────────────────────┘

特殊数据类型

Nullable

Nullable并不能算是一种独立的数据类型,它更像是一种辅助的修饰符,需要与基础数据类型一起搭配使用。Nullable类型与Java8的Optional对象有些相似,它表示某个基础数据类型可以是Null值。

CREATE TABLE Null_TEST (
    c1 String,
    c2 Nullable(UInt8)
) ENGINE = TinyLog;
--通过Nullable修饰后c2字段可以被写入Null值:
INSERT INTO Null_TEST VALUES ('nauu',null)
INSERT INTO Null_TEST VALUES ('bruce',20)
SELECT c1 , c2 ,toTypeName(c2) FROM Null_TEST
┌─c1───┬───c2─┬─toTypeName(c2)─┐
│ nauu   │ NULL    │ Nullable(UInt8) │
│ bruce  │ 20      │ Nullable(UInt8) │
└─────┴──────┴───────────┘

Domain

域名类型分为IPv4和IPv6两类,本质上它们是对整型和字符串的进一步封装。IPv4类型是基于UInt32封装的。

ClickHouse相关资料分享

ClickHouse经典中文文档分享

系列文章

clickhouse系列文章

相关文章
|
存储 SQL 大数据
大数据技术之Clickhouse---入门篇---数据类型、表引擎
大数据技术之Clickhouse---入门篇---数据类型、表引擎
|
2月前
|
存储 SQL 分布式计算
大数据-135 - ClickHouse 集群 - 数据类型 实际测试
大数据-135 - ClickHouse 集群 - 数据类型 实际测试
43 0
|
7月前
|
存储 传感器 网络协议
ClickHouse 数据类型、表引擎与TTL
ClickHouse数据类型包括UInt8、Int64等,对应Java的Short、Long等,支持数字、字符串、日期时间、数组、枚举、UUID和IP地址等多种类型。建表时需确定好数据类型,避免后期转换影响效率。不要使用Nullable类型,因其低效。合理设置分区和索引,避免轻量删除和修改操作。表引擎如TinyLog适合小规模数据,MergeTree适用于有序时间序列,ReplacingMergeTree用于替换更新数据,AggregatingMergeTree和SummingMergeTree做聚合计算,CollapsingMergeTree保留最新状态。
284 1
|
存储 SQL 关系型数据库
ClickHouse常见数据类型以及常用SQL语法
ClickHouse常见数据类型以及常用SQL语法
|
数据库
58.【clickhouse】ClickHouse从入门到放弃-数据类型转换
【clickhouse】ClickHouse从入门到放弃-数据类型转换
58.【clickhouse】ClickHouse从入门到放弃-数据类型转换
|
存储 SQL 网络协议
ClickHouse数据库数据定义手记之数据类型(上)
前边一篇文章详细分析了如何在Windows10系统下搭建ClickHouse的开发环境,接着需要详细学习一下此数据库的数据定义,包括数据类型、DDL和DML。ClickHouse作为一款完备的DBMS,提供了类似于MySQL(其实有部分语法差别还是比较大的)的DDL与DML功能,并且实现了大部分标准SQL规范中的内容。系统学习ClickHouse的数据定义能够帮助开发者更深刻地理解和使用ClickHouse。
559 0
ClickHouse数据库数据定义手记之数据类型(上)
|
SQL 存储 网络协议
ClickHouse数据库数据定义手记之数据类型(下)
前边一篇文章详细分析了如何在Windows10系统下搭建ClickHouse的开发环境,接着需要详细学习一下此数据库的数据定义,包括数据类型、DDL和DML。ClickHouse作为一款完备的DBMS,提供了类似于MySQL(其实有部分语法差别还是比较大的)的DDL与DML功能,并且实现了大部分标准SQL规范中的内容。系统学习ClickHouse的数据定义能够帮助开发者更深刻地理解和使用ClickHouse。
546 0
|
2月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
2天前
|
SQL Unix OLAP
ClickHouse安装教程:开启你的列式数据库之旅
ClickHouse 是一个高性能的列式数据库管理系统,适用于在线分析处理(OLAP)。本文介绍了 ClickHouse 的基本使用步骤,包括下载二进制文件、安装应用、启动服务器和客户端、创建表、插入数据以及查询新表。还提到了图形客户端 DBeaver 的使用,使操作更加直观。通过这些步骤,用户可以快速上手并利用 ClickHouse 的强大性能进行数据分析。
14 4
|
2月前
|
存储 分布式计算 数据库
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
下一篇
DataWorks