计算机里的套接字到底是什么

简介: 【4月更文挑战第3天】套接字在网络编程中扮演着重要角色,类似于电话和电话号码的概念。文章介绍了套接字的基本概念和工作原理,包括服务器端和客户端的初始化、连接建立、数据传输和断开连接的过程。

在网络编程中,我们经常会提到 socket 这个词,它的中文翻译为套接字,有的时候也叫做套接口。


那到底应该怎么理解 socket 呢?这张图表达的其实是网络编程中,客户端和服务器工作的核心逻辑。

image.png

先从右侧的服务器端开始看,因为在客户端发起连接请求之前,服务器端必须初始化好。右侧的图显示的是服务器端初始化的过程,首先初始化 socket,之后服务器端需要执行 bind 函数,将自己的服务能力绑定在一个众所周知的地址和端口上,紧接着,服务器端执行 listen 操作,将原先的 socket 转化为服务端的 socket,服务端最后阻塞在 accept 上等待客户端请求的到来。

此时,服务器端已经准备就绪。客户端需要先初始化 socket,再执行 connect 向服务器端的地址和端口发起连接请求,这里的地址和端口必须是客户端预先知晓的。这个过程,就是著名的 TCP 三次握手(Three-way Handshake)。


一旦三次握手完成,客户端和服务器端建立连接,就进入了数据传输过程。


客户端进程向操作系统内核发起 write 字节流写操作,内核协议栈将字节流通过网络设备传输到服务器端,服务器端从内核得到信息,将字节流从内核读入到进程中,并开始业务逻辑的处理,完成之后,服务器端再将得到的结果以同样的方式写给客户端。可以看到,一旦连接建立,数据的传输就不再是单向的,而是双向的,这也是 TCP 的一个显著特性。


客户端完成和服务器端的交互后,比如执行一次 Telnet 操作,或者一次 HTTP 请求,需要和服务器端断开连接时,就会执行 close 函数,操作系统内核此时会通过原先的连接链路向服务器端发送一个 FIN 包,服务器收到之后执行被动关闭,这时候整个链路处于半关闭状态,此后,服务器端也会执行 close 函数,整个链路才会真正关闭。半关闭的状态下,发起 close 请求的一方在没有收到对方 FIN 包之前都认为连接是正常的;而在全关闭的状态下,双方都感知连接已经关闭。


无论是客户端的 connect,还是服务端的 accept,或者 read/write 操作等,socket 是我们用来建立连接,传输数据的唯一途径。


把整个 TCP 的网络交互和数据传输想象成打电话,顺着这个思路想象,socket 就好像是我们手里的电话机,connect 就好比拿着电话机拨号,而服务器端的 bind 就好比是去电信公司开账号,将电话号码和我们家里的电话机绑定,这样别人就可以用这个号码找到你,listen 就好似人们在家里听到了响铃,accept 就好比是被叫的一方拿起电话开始应答。至此,三次握手就完成了,连接建立完毕。

接下来,拨打电话的人开始说话:“你好。”这时就进入了 write,接收电话的人听到的过程可以想象成 read(听到并读出数据),并且开始应答,双方就进入了 read/write 的数据传输过程。

最后,拨打电话的人完成了此次交流,挂上电话,对应的操作可以理解为 close,接听电话的人知道对方已挂机,也挂上电话,也是一次 close。


在整个电话交流过程中,电话是我们可以和外面通信的设备,对应到网络编程的世界里,socket 也是我们可以和外界进行网络通信的途径。


套接字的通用地址结构

/* POSIX.1g 规范规定了地址族为2字节的值.  */
typedef unsigned short int sa_family_t;
/* 描述通用套接字地址  */
struct sockaddr{
    sa_family_t sa_family;  /* 地址族.  16-bit*/
    char sa_data[14];   /* 具体的地址值 112-bit */
  };

在这个结构体里,第一个字段是地址族,它表示使用什么样的方式对地址进行解释和保存,好比电话簿里的手机格式,或者是固话格式,这两种格式的长度和含义都是不同的。地址族在 glibc 里的定义非常多,常用的有以下几种:

  • AF_LOCAL:表示的是本地地址,对应的是 Unix 套接字,这种情况一般用于本地 socket 通信,很多情况下也可以写成
  • AF_UNIX、AF_FILE;AF_INET:因特网使用的 IPv4 地址;
  • AF_INET6:因特网使用的 IPv6 地址。


常用的 IPv4 地址族的结构

/* IPV4套接字地址,32bit值.  */
typedef uint32_t in_addr_t;
struct in_addr
  {
    in_addr_t s_addr;
  };
  
/* 描述IPV4的套接字地址格式  */
struct sockaddr_in
  {
    sa_family_t sin_family; /* 16-bit */
    in_port_t sin_port;     /* 端口号  16-bit*/
    struct in_addr sin_addr;    /* Internet address. 32-bit */
    /* 这里仅仅用作占位符,不做实际用处  */
    unsigned char sin_zero[8];
  };


glibc 定义的保留端口

/* Standard well-known ports.  */
enum
  {
    IPPORT_ECHO = 7,    /* Echo service.  */
    IPPORT_DISCARD = 9,   /* Discard transmissions service.  */
    IPPORT_SYSTAT = 11,   /* System status service.  */
    IPPORT_DAYTIME = 13,  /* Time of day service.  */
    IPPORT_NETSTAT = 15,  /* Network status service.  */
    IPPORT_FTP = 21,    /* File Transfer Protocol.  */
    IPPORT_TELNET = 23,   /* Telnet protocol.  */
    IPPORT_SMTP = 25,   /* Simple Mail Transfer Protocol.  */
    IPPORT_TIMESERVER = 37, /* Timeserver service.  */
    IPPORT_NAMESERVER = 42, /* Domain Name Service.  */
    IPPORT_WHOIS = 43,    /* Internet Whois service.  */
    IPPORT_MTP = 57,
    IPPORT_TFTP = 69,   /* Trivial File Transfer Protocol.  */
    IPPORT_RJE = 77,
    IPPORT_FINGER = 79,   /* Finger service.  */
    IPPORT_TTYLINK = 87,
    IPPORT_SUPDUP = 95,   /* SUPDUP protocol.  */
    IPPORT_EXECSERVER = 512,  /* execd service.  */
    IPPORT_LOGINSERVER = 513, /* rlogind service.  */
    IPPORT_CMDSERVER = 514,
    IPPORT_EFSSERVER = 520,
    /* UDP ports.  */
    IPPORT_BIFFUDP = 512,
    IPPORT_WHOSERVER = 513,
    IPPORT_ROUTESERVER = 520,
    /* Ports less than this value are reserved for privileged processes.  */
    IPPORT_RESERVED = 1024,
    /* Ports greater this value are reserved for (non-privileged) servers.  */
    IPPORT_USERRESERVED = 5000


IPv6 套接字地址格式

struct sockaddr_in6
  {
    sa_family_t sin6_family; /* 16-bit */
    in_port_t sin6_port;  /* 传输端口号 # 16-bit */
    uint32_t sin6_flowinfo; /* IPv6流控信息 32-bit*/
    struct in6_addr sin6_addr;  /* IPv6地址128-bit */
    uint32_t sin6_scope_id; /* IPv6域ID 32-bit */
  };


IPv4 和 IPv6 套接字地址结构的长度是固定的,而本地地址结构的长度是可变的。

image.png

相关文章
|
安全 Linux iOS开发
Anaconda下载及安装保姆级教程(详细图文)
Anaconda下载及安装保姆级教程(详细图文)
29179 1
Anaconda下载及安装保姆级教程(详细图文)
|
机器学习/深度学习 测试技术
大模型开发:描述交叉验证以及为什么在模型评估中使用它。
【4月更文挑战第24天】交叉验证是评估机器学习模型性能的方法,通过将数据集分成训练集和多个子集(折叠)进行多次训练验证。它能减少过拟合风险,提供更可靠的性能估计,用于参数调优,并减少小数据集或噪声带来的随机性影响。通过汇总多轮验证结果,得到模型的整体性能估计。
287 7
|
Arthas 运维 监控
定位频繁创建对象导致内存溢出风险的思路
定位频繁创建对象导致内存溢出风险的思路
430 1
|
10月前
|
并行计算 前端开发 物联网
全网首发!真·从0到1!万字长文带你入门Qwen2.5-Coder——介绍、体验、本地部署及简单微调
2024年11月12日,阿里云通义大模型团队正式开源通义千问代码模型全系列,包括6款Qwen2.5-Coder模型,每个规模包含Base和Instruct两个版本。其中32B尺寸的旗舰代码模型在多项基准评测中取得开源最佳成绩,成为全球最强开源代码模型,多项关键能力超越GPT-4o。Qwen2.5-Coder具备强大、多样和实用等优点,通过持续训练,结合源代码、文本代码混合数据及合成数据,显著提升了代码生成、推理和修复等核心任务的性能。此外,该模型还支持多种编程语言,并在人类偏好对齐方面表现出色。本文为周周的奇妙编程原创,阿里云社区首发,未经同意不得转载。
27972 18
|
网络协议 Linux 数据处理
网络编程【网络编程基本概念、 网络通信协议、IP地址 、 TCP协议和UDP协议】(一)-全面详解(学习总结---从入门到深化)
网络编程【网络编程基本概念、 网络通信协议、IP地址 、 TCP协议和UDP协议】(一)-全面详解(学习总结---从入门到深化)
414 3
|
8月前
|
测试技术
Valley2,基于电商场景的多模态大模型
Valley2是一种新颖的多模态大型语言模型,旨在通过可扩展的视觉-语言设计增强各个领域的性能,并拓展电子商务和短视频场景的实际应用边界。
325 3
|
负载均衡 网络协议 安全
DNS解析中的Anycast技术:原理与优势
【9月更文挑战第7天】在互联网体系中,域名系统(DNS)将域名转换为IP地址,但网络规模的扩张使DNS解析面临高效、稳定与安全挑战。Anycast技术应运而生,通过将同一IP地址分配给多个地理分布的服务器,并依据网络状况自动选择最近且负载低的服务器响应查询请求,提升了DNS解析速度与效率,实现负载均衡,缓解DDoS攻击,增强系统高可用性。此技术利用动态路由协议如BGP实现,未来在网络发展中将扮演重要角色。
906 0
|
应用服务中间件 API 数据库
Docker 安装 KONG 带你玩转 API 网关
**摘要:** 在微服务架构中,API网关Kong作为流行开源选择,提供身份验证、安全和流量控制等功能。通过Docker部署Kong简单高效。步骤包括:创建Docker网络,部署PostgreSQL数据库,初始化Kong数据库,启动Kong容器,并检查运行状态。此外,安装Konga管理界面便于直观管理Kong。使用Docker命令行,逐步设置环境变量和网络连接,即可完成安装。当不再需要时,可清理相关容器和网络。Kong结合Konga,为API管理提供强大且用户友好的解决方案。
878 1
|
存储 Java 索引
32 位和 64 位 JVM 中 int 变量的大小解析
【8月更文挑战第21天】
605 0
|
Web App开发 缓存 运维
CentOS命令大全:从入门到精通
CentOS命令大全:从入门到精通
1482 1