【SQL Server】2. 将数据导入导出到Excel表格当中

简介: 【SQL Server】2. 将数据导入导出到Excel表格当中

最开始,博主介绍一下自己的环境:SQL Sever 2008 R2
SQL Sever 大致都差不多

1. 通过自带软件的方式

首先找到下载SQL Sever中提供的导入导出工具
在这里插入图片描述
在这里插入图片描述
如果开始界面没有找到自己下载的路径
C:\Program Files\Microsoft SQL Server\100\DTS\Binn下的DTSWizard.exe文件
在这里插入图片描述

导出

1.1 打开界面

在这里插入图片描述

1.2 选择自己的数据源和数据库

在这里插入图片描述

1.3 选择导出目标

这里博主导出到Excel文件当中
在这里插入图片描述

1.4 选择直接导出数据还是进行查询

在这里插入图片描述
查询的话将自己在SSMS上编写的SQL语句直接复制到框中即可(确保SQL正确,可以进行测试!)
这里博主直接导出表中数据

1.5 选择表目标

在这里插入图片描述
==这里需要切记表的分隔符为:
行:{CR}{LF}
列:制表符==
格式不对,可能导出的结构出错
(也就是不按照行列的方式导入到Excel当中!)

1.6 完成导出

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.7 检查是否导出成功

在这里插入图片描述
可以看到Excel表格中出现新数据!

导入

1.1 打开界面

在这里插入图片描述

1.2 选择数据源

这里博主选择的是Excel表格
==这里的标题分隔符选{CR}{LF}==
这里博主前面有6行垃圾数据(所以选择跳过6行)
在这里插入图片描述
行分隔符{CR}{LF}
列分隔符制表符
在这里插入图片描述

1.3 选择导入目标数据库

选择自己的服务器和数据库
在这里插入图片描述

1.4 选择表

导入的目标表
在这里插入图片描述

1.5 选择数据类型映射

在这里插入图片描述

1.6 完成导入

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.7 检查是否导入成功

选择SSMS工具
在这里插入图片描述
打开对应的表和数据行
在这里插入图片描述
查看数据,可以看到数据导入成功!
在这里插入图片描述

SQL Sever 2008 R2 存在的问题:

这是SQLSever2008R2所独有的,其他版本不清楚,自行了解!
对于还未和SQL Sever数据库建立过链接的新建Excel表格无法导入导出数据!
所以咱们需要先让Excel表格和数据库建立连接

1.1 随便找个表查看表中数据

在这里插入图片描述
在这里插入图片描述

1.2 选择将结果保存到文件

右键SQL语句框出现如下界面
在这里插入图片描述

1.3 右键选择执行

在这里插入图片描述

1.4 保存结果

在这里插入图片描述

1.5 查看文件

在这里插入图片描述
可以看到Excel文件中出现了数据,但是这些数据无法分析(无效数据),将这些数据删除就可以正常进行导入导出。

2. 通过Pycharm(ODBC)的方式

代码如下所示:

import pyodbc
import pandas as pd
# 创建连接字符串
conn_str = (
    r'DRIVER={SQL Server Native Client 10.0};'
    r'SERVER=BF-202403241716;'
    r'DATABASE=scott;'
    r'Trusted_Connection=Yes;'
)
# 建立连接
cnxn = pyodbc.connect(conn_str)
# 创建游标对象
cursor = cnxn.cursor()
# 执行SQL查询
query = "SELECT * FROM dbo.salgrade"
cursor.execute(query)
# 获取查询结果
data1 = cursor.fetchall()
print(type(data1))
print(data1)

# 获取列名
columns1 = [column[0] for column in cursor.description]
print(type(columns1))
print(columns1)

# 将元组列表展开为一维数组
data1 = [list(item) for item in data1]
print(type(data1))
print(data1)

# 将结果转换为DataFrame
df1 = pd.DataFrame(data1, columns=columns1)
print(df1)


# 将数据写入Excel文件
df1.to_excel('output.xlsx', index=False)

# 关闭数据库连接
cursor.close()
cnxn.close()

关键点1:连接方式

数据库是:SQL Sever 2008 R2 所以这里采用的连接方式是SQL Sever Native Client 10.0 如果是更新的版本应该是16或者其他
(可以问问ChartGPT)

# 创建连接字符串
conn_str = (
    r'DRIVER={SQL Server Native Client 10.0};'
    r'SERVER=BF-202403241716;'
    r'DATABASE=scott;'
    r'Trusted_Connection=Yes;'
)

具体的服务器和数据库按照自己的来,这里我SQL Sever通过验证的方式是Windows验证,所以这里r'Trusted_Connection=Yes;' 如果有用户密码,请使用用户密码的方式登录。

关键点2:元组列表需要转换为一维数组(???)

# 将元组列表展开为一维数组
data1 = [list(item) for item in data1]
print(type(data1))
print(data1)
<class 'list'>
[(1, 700, 1200), (2, 1201, 1400), (3, 1401, 2000), (4, 2001, 3000), (5, 3001, 9999)]
<class 'list'>
[[1, 700, 1200], [2, 1201, 1400], [3, 1401, 2000], [4, 2001, 3000], [5, 3001, 9999]]
   grade  losal  hisal
0      1    700   1200
1      2   1201   1400
2      3   1401   2000
3      4   2001   3000
4      5   3001   9999

需要将元组列表展开为一维数组
原因:data1 是一个包含元组的列表,每个元组都是一个行,但是传递给DataFrame的每行数据应该是一维的,如果不进行转换,那么传递的数据就是二维的
在这里插入图片描述
会出现如下类型不匹配的报错==(解决了半天,还是有点不理解)==

import pyodbc
import pandas as pd

# 假设data是cursor.fetchall()返回的结果,它是一个包含元组的列表
data = [(1, 700, 1200), (2, 1201, 1400), (3, 1401, 2000), (4, 2001, 3000), (5, 3001, 9999)]
print(type(data))
print(data)
# 获取列名
columns = ['grade', 'losal', 'hisal']  # 确保这些列名与您的表中的列名相匹配
print(type(columns))
print(columns)

# 将结果转换为DataFrame
df = pd.DataFrame(list(data), columns=columns)
print(df)

在这里插入图片描述
code2当中代码如上,同样还是一个包含元组的列表,但是就是可以转换成DataFrame的形式==(很奇怪啊)==

关键点3:import导包

如果直接从官网进行下载的话,速度可能会很慢,而且有时候还会断开连接,所以可以选择一些国内的镜像网站

pip install some-package -i https://pypi.tuna.tsinghua.edu.cn/simple

以下这种方式就很慢:

(.venv) PS D:\code\test_3_29> pip install openpyxl
Collecting openpyxl
  Downloading openpyxl-3.1.2-py2.py3-none-any.whl.metadata (2.5 kB)
Collecting et-xmlfile (from openpyxl)
  Downloading et_xmlfile-1.1.0-py3-none-any.whl.metadata (1.8 kB)
Downloading openpyxl-3.1.2-py2.py3-none-any.whl (249 kB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 250.0/250.0 kB 547.4 kB/s eta 0:00:00
Downloading et_xmlfile-1.1.0-py3-none-any.whl (4.7 kB)
Installing collected packages: et-xmlfile, openpyxl
Successfully installed et-xmlfile-1.1.0 openpyxl-3.1.2

成功结果如下:
在这里插入图片描述
在这里插入图片描述
方法放在gitee上了,自取哟!

相关文章
|
6月前
|
Python
如何根据Excel某列数据为依据分成一个新的工作表
在处理Excel数据时,我们常需要根据列值将数据分到不同的工作表或文件中。本文通过Python和VBA两种方法实现该操作:使用Python的`pandas`库按年级拆分为多个文件,再通过VBA宏按班级生成新的工作表,帮助高效整理复杂数据。
|
6月前
|
数据采集 数据可视化 数据挖掘
用 Excel+Power Query 做电商数据分析:从 “每天加班整理数据” 到 “一键生成报表” 的配置教程
在电商运营中,数据是增长的关键驱动力。然而,传统的手工数据处理方式效率低下,耗费大量时间且易出错。本文介绍如何利用 Excel 中的 Power Query 工具,自动化完成电商数据的采集、清洗与分析,大幅提升数据处理效率。通过某美妆电商的实战案例,详细拆解从多平台数据整合到可视化报表生成的全流程,帮助电商从业者摆脱繁琐操作,聚焦业务增长,实现数据驱动的高效运营。
|
8月前
|
存储 安全 大数据
网安工程师必看!AiPy解决fscan扫描数据整理难题—多种信息快速分拣+Excel结构化存储方案
作为一名安全测试工程师,分析fscan扫描结果曾是繁琐的手动活:从海量日志中提取开放端口、漏洞信息和主机数据,耗时又易错。但现在,借助AiPy开发的GUI解析工具,只需喝杯奶茶的时间,即可将[PORT]、[SERVICE]、[VULN]、[HOST]等关键信息智能分类,并生成三份清晰的Excel报表。告别手动整理,大幅提升效率!在安全行业,工具党正碾压手动党。掌握AiPy,把时间留给真正的攻防实战!官网链接:https://www.aipyaipy.com,解锁更多用法!
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
2266 10
|
6月前
|
Python
将Excel特定某列数据删除
将Excel特定某列数据删除
|
11月前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
593 9
|
11月前
|
分布式计算 Hadoop 大数据
从Excel到Hadoop:数据规模的进化之路
从Excel到Hadoop:数据规模的进化之路
255 10
|
10月前
|
SQL 容灾 关系型数据库
阿里云DTS踩坑经验分享系列|DTS打通SQL Server数据通道能力介绍
SQL Server 以其卓越的易用性和丰富的软件生态系统,在数据库行业中占据了显著的市场份额。作为一款商业数据库,外部厂商在通过解析原生日志实现增量数据捕获上面临很大的挑战,DTS 在 SQL Sever 数据通道上深研多年,提供了多种模式以实现 SQL Server 增量数据捕获。用户可以通过 DTS 数据传输服务,一键打破自建 SQL Server、RDS SQL Server、Azure、AWS等他云 SQL Server 数据孤岛,实现 SQL Server 数据源的流动。
640 0
阿里云DTS踩坑经验分享系列|DTS打通SQL Server数据通道能力介绍
|
存储 Java easyexcel
招行面试:100万级别数据的Excel,如何秒级导入到数据库?
本文由40岁老架构师尼恩撰写,分享了应对招商银行Java后端面试绝命12题的经验。文章详细介绍了如何通过系统化准备,在面试中展示强大的技术实力。针对百万级数据的Excel导入难题,尼恩推荐使用阿里巴巴开源的EasyExcel框架,并结合高性能分片读取、Disruptor队列缓冲和高并发批量写入的架构方案,实现高效的数据处理。此外,文章还提供了完整的代码示例和配置说明,帮助读者快速掌握相关技能。建议读者参考《尼恩Java面试宝典PDF》进行系统化刷题,提升面试竞争力。关注公众号【技术自由圈】可获取更多技术资源和指导。
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
674 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档