搭建k8s集群kubeadm搭建Kubernetes二进制搭建Kubernetes集群

简介: 搭建k8s集群kubeadm搭建Kubernetes二进制搭建Kubernetes集群

搭建k8s集群:

       1.kubeadm搭建Kubernetes集群。

       2.二进制搭建Kubernetes集群

1 搭建K8s环境平台规划

1.1 单master集群

1.2 多master集群

2 服务器硬件配置要求

  • 在开始部署k8s集群之前,服务器需要满足以下条件:
  • 1️⃣一台或多台服务器,操作系统CentOS 7.x-86_x64。
  • 2️⃣硬盘配置:内存2GB或更多,CPU2核或更多,硬盘30GB或更多。
  • 3️⃣集群中的所有机器之间网络互通。
  • 4️⃣可以访问外网,需要拉取镜像。
  • 5️⃣禁止swap分区。

3 搭建k8s集群部署方式

  • 目前生产部署k8s集群主要有两种方式:
  • 1️⃣kubeadm:
  • kubeadm是一个k8s部署工具,提供kubeadmin init和kubeadm join,用于快速部署k8s集群。
  • 官网地址
  • 2️⃣二级制包:
  • 从GitHub下载发行版的二进制包,手动部署每个组件,组成k8s集群。
  • kubeadm降低部署门槛,但是屏蔽了很多细节,遇到问题很难排查。如果想要更容易可控,推荐使用二级制包部署k8s集群,虽然手动部署麻烦点,期间可以学习很多工作原理,也有利于后期维护。

4 kubeadm搭建k8s集群

4.1 概述

  • kubeadm是官方社区推出的一个用于快速部署k8s集群的工具,这个工具能通过两个命令完成一个k8s集群的部署。
  • 1️⃣创建master节点:
kubeadm init
  • 2️⃣将Node节点加入到当前集群中:
kubeadm join <master节点的IP和端口>

4.2 准备环境

角色 IP
k8s-master 192.168.217.100
k8s-node1 192.168.217.101
k8s-node2 192.168.217.102

4.3 系统初始化

4.3.1 关闭防火墙

  • 关闭防火墙:
systemctl stop firewalld
  • 禁止防火墙开机自启:
systemctl disable firewalld

4.3.2 关闭selinux

  • 永久关闭:
# 永久
sed -i 's/enforcing/disabled/' /etc/selinux/config
# 重启
reboot
  • 临时关闭:
 # 临时
setenforce 0

4.3.3 关闭swap分区

  • 永久关闭swap分区:
# 永久
sed -ri 's/.*swap.*/#&/' /etc/fstab
# 重启
reboot
  • 临时关闭swap分区:
swapoff -a

4.3.4 主机名

  • 设置主机名:
hostnamectl set-hostname <hostname>
  • 设置192.168.217.100的主机名:
hostnamectl set-hostname k8s-master
  • 设置192.168.217.101的主机名:
hostnamectl set-hostname k8s-node1
  • 设置192.168.217.102的主机名:
hostnamectl set-hostname k8s-node2

4.3.5 在master节点上添加hosts

  • 在每个节点添加hosts:
cat >> /etc/hosts << EOF
192.168.217.100 k8s-master
192.168.217.101 k8s-node1
192.168.217.102 k8s-node2
EOF

4.3.6 将桥接的IPv4流量传递到iptables的链

  • 在每个节点添加如下的命令:
cat > /etc/sysctl.d/k8s.conf << EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
vm.swappiness = 0
EOF
# 加载br_netfilter模块
modprobe br_netfilter
# 查看是否加载
lsmod | grep br_netfilter
# 生效
sysctl --system  

4.3.7 时间同步

  • 在每个节点添加时间同步:
yum install ntpdate -y
ntpdate time.windows.com

4.3.8 开启ipvs

  • 在每个节点安装ipset和ipvsadm:
yum -y install ipset ipvsadm
  • 在所有节点执行如下脚本:
cat > /etc/sysconfig/modules/ipvs.modules <<EOF
#!/bin/bash
modprobe -- ip_vs
modprobe -- ip_vs_rr
modprobe -- ip_vs_wrr
modprobe -- ip_vs_sh
modprobe -- nf_conntrack_ipv4
EOF
  • 授权、运行、检查是否加载:
chmod 755 /etc/sysconfig/modules/ipvs.modules && bash /etc/sysconfig/modules/ipvs.modules && lsmod | grep -e ip_vs -e nf_conntrack_ipv4
  • 检查是否加载:
lsmod | grep -e ipvs -e nf_conntrack_ipv4

4.4 所有节点安装Docker/kubeadm/kubelet/kubectl#

4.4.1 概述

  • k8s默认CRI(容器运行时)为Docker,因此需要先安装Docker。

4.4.2 安装Docker

  • 安装Docker:
wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo -O /etc/yum.repos.d/docker-ce.repo
yum -y install docker-ce-18.06.3.ce-3.el7
systemctl enable docker && systemctl start docker
docker version
  • 设置Docker镜像加速器:
sudo mkdir -p /etc/docker
sudo tee /etc/docker/daemon.json <<-'EOF'
{
  "exec-opts": ["native.cgroupdriver=systemd"], 
  "registry-mirrors": ["https://b9pmyelo.mirror.aliyuncs.com"]
}
EOF
sudo systemctl daemon-reload
sudo systemctl restart docker

4.4.3 添加阿里云的YUM软件源

cat > /etc/yum.repos.d/kubernetes.repo << EOF
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=0
repo_gpgcheck=0
gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF

4.4.4 安装kubeadm、kubelet和kubectl#

  • 由于版本更新频繁,这里指定版本号部署:
yum install -y kubelet-1.18.0 kubeadm-1.18.0 kubectl-1.18.0
  • 为了实现Docker使用的cgroup drvier和kubelet使用的cgroup drver一致,建议修改"/etc/sysconfig/kubelet"文件的内容:
vim /etc/sysconfig/kubelet
# 修改
KUBELET_EXTRA_ARGS="--cgroup-driver=systemd"
  • 设置为开机自启动即可,由于没有生成配置文件,集群初始化后自动启动:
systemctl enable kubelet

4.5 部署k8s的Master节点

  • 部署k8s的Master节点(192.168.217.100):
# 由于默认拉取镜像地址k8s.gcr.io国内无法访问,这里需要指定阿里云镜像仓库地址
kubeadm init \
  --apiserver-advertise-address=192.168.217.100 \
  --image-repository registry.aliyuncs.com/google_containers \
  --kubernetes-version v1.18.0 \
  --service-cidr=10.96.0.0/12 \
  --pod-network-cidr=10.244.0.0/16

  • 根据提示信息,在Master节点上使用kubectl工具:
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

4.6 添加k8s的Node节点

  • 在192.168.217.101和192.168.217.102上添加如下的命令:
# 向k8s集群中添加Node节点
kubeadm join 192.168.217.100:6443 --token 4016im.eg4e10yamcbxjm59 \
    --discovery-token-ca-cert-hash sha256:ce2111ce594e5189255144a72268250e5eedda87470cc3a1f69f8c973927699e

  • 默认的token有效期为24小时,当过期之后,该token就不能用了,这时可以使用如下的命令创建token:
kubeadm token create --print-join-command
# 生成一个永不过期的token
kubeadm token create --ttl 0

4.7 部署CNI网络插件

  • 根据提示,在Master节点使用kubectl工具查看节点状态:
kubectl get nodes

  • 在Master节点部署CNI网络插件(可能会失败,如果失败,请下载到本地,然后安装):
wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml

 

  • 查看部署CNI网络插件进度:
kubectl get pods -n kube-system

  • 再次在Master节点使用kubectl工具查看节点状态:
kubectl get nodes

  • 查看集群健康状态:
kubectl get cs

kubectl cluster-info

5 二进制包搭建k8s集群

5.1 准备环境

角色 IP 组件
k8s-master 192.168.217.100 kube-api-server、kube-controller-manager、kube-scheduler、docker、etcd
k8s-node1 192.168.217.101 kubelet、kube-proxy、docker、etcd
k8s-node2 192.168.217.102 kubelet、kube-proxy、docker、etcd

5.2 系统初始化

  • 4.3系统初始化一样。

5.3 部署etcd集群

5.3.1 概述

  • etcd是一个分布式键值存储系统,kubernetes使用etcd进行数据存储,所以需要先准备一个etcd数据库,为了解决etcd单点故障,应该采用集群方式部署,这里可以使用3台组建集群,可以容忍1台机器故障。
节点名称 IP
etcd-1 192.168.217.100
etcd-2 192.168.217.101
etcd-3 192.168.217.102

注意:为了节省机器,这里和k8s节点机器复用。也可以独立于k8s集群之外部署,只要API Server能连接即可。

5.3.2 准备cfssl证书生成工具

  • cfssl是一个开源的证书管理工具,使用JSON文件生成证书,相比openssl更方便使用。
  • 找任意一台服务器操作,这里使用Master节点。
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64
chmod +x cfssl_linux-amd64 cfssljson_linux-amd64 cfssl-certinfo_linux-amd64
mv cfssl_linux-amd64 /usr/local/bin/cfssl
mv cfssljson_linux-amd64 /usr/local/bin/cfssljson
mv cfssl-certinfo_linux-amd64 /usr/bin/cfssl-certinfo

5.3.3 生成etcd证书

  • 1️⃣自签证书颁发机构(CA):
  • 创建工作目录:
mkdir -pv ~/TLS/{etcd,k8s}
cd TLS/etcd
  • 自签CA:
cat > ca-config.json <<EOF
{
  "signing": {
    "default": {
      "expiry": "87600h"
    },
    "profiles": {
      "kubernetes": {
         "expiry": "87600h",
         "usages": [
            "signing",
            "key encipherment",
            "server auth",
            "client auth"
        ]
      }
    }
  }
}
EOF
cat > ca-csr.json <<EOF
{
    "CN": "kubernetes",
    "key": {
        "algo": "rsa",
        "size": 2048
    },
    "names": [
        {
            "C": "CN",
            "L": "Beijing",
            "ST": "Beijing",
            "O": "k8s",
            "OU": "System"
        }
    ]
}
EOF
  • 生成证书:
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -
  • 查看生成证书:
ls -l *pem
  • 创建证书申请文件:
cat > server-csr.json <<EOF
{
  "CN": "etcd",
  "hosts": [
    "192.168.217.100",
    "192.168.217.101",
    "192.168.217.102"
  ],
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "ST": "Beijing",
      "L": "Beijing",
      "O": "k8s",
      "OU": "System"
    }
  ]
}
EOF
  • 生成证书:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes server-csr.json | cfssljson -bare server
  • 查看生成证书:
ls -l server*pem

5.3.4 从GitHub下载二进制文件

wget https://github.com/etcd-io/etcd/releases/download/v3.4.9/etcd-v3.4.9-linux-amd64.tar.gz

5.3.5 部署etcd集群

  • 在master节点创建工作目录并解压二进制包:
mkdir -pv /opt/etcd/{bin,cfg,ssl}
tar -zxvf etcd-v3.4.9-linux-amd64.tar.gz
mv etcd-v3.4.9-linux-amd64/{etcd,etcdctl} /opt/etcd/bin/
  • 创建etcd配置文件
cat > /opt/etcd/cfg/etcd.conf << EOF
#[Member] 
ETCD_NAME="etcd-1"  
ETCD_DATA_DIR="/var/lib/etcd/default.etcd" 
ETCD_LISTEN_PEER_URLS="https://192.168.217.100:2380" 
ETCD_LISTEN_CLIENT_URLS="https://192.168.217.100:2379" 
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.217.100:2380" 
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.217.100:2379" 
ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.217.100:2380,etcd-2=https://192.168.217.101:2380,etcd-3=https://192.168.217.102:2380" 
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster" 
ETCD_INITIAL_CLUSTER_STATE="new" 
EOF
  • ETCD_NAME:节点名称。
  • ETCD_DATA_DIR:数据目录。
  • ETCD_LISTEN_PEER_URLS:集群通信监听地址。
  • ETCD_LISTEN_CLIENT_URLS:客户端访问监听地址 。
  • ETCD_INITIAL_ADVERTISE_PEER_URLS:集群通告地址。
  • ETCD_ADVERTISE_CLIENT_URLS:客户端通告地址。
  • ETCD_INITIAL_CLUSTER:集群节点地址。
  • ETCD_INITIAL_CLUSTER_TOKEN:集群 Token。
  • ETCD_INITIAL_CLUSTER_STATE:加入集群的当前状态, new 是新集群, existing 表示加入已有集群。
  • systemd管理etcd:
cat > /usr/lib/systemd/system/etcd.service << EOF
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.targcaet
[Service]
Type=notify
EnvironmentFile=/opt/etcd/cfg/etcd.conf
ExecStart=/opt/etcd/bin/etcd \
--cert-file=/opt/etcd/ssl/server.pem \
--key-file=/opt/etcd/ssl/server-key.pem \
--peer-cert-file=/opt/etcd/ssl/server.pem \
--peer-key-file=/opt/etcd/ssl/server-key.pem \
--trusted-ca-file=/opt/etcd/ssl/ca.pem \
--peer-trusted-ca-file=/opt/etcd/ssl/ca.pem \
--logger=zap
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
  • 拷贝刚才生成的证书:
cp ~/TLS/etcd/ca*pem ~/TLS/etcd/server*pem /opt/etcd/ssl/
  • 复制master节点所生成的文件到node节点:
scp -r /opt/etcd/ root@192.168.217.101:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.217.101:/usr/lib/systemd/system/
scp -r /opt/etcd/ root@192.168.217.102:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.217.102:/usr/lib/systemd/system/
  • 修改node节点中etcd.conf配置文件中节点名称和当前服务器的IP:
vim /opt/etcd/cfg/etcd.conf
#[Member]  
ETCD_NAME="etcd-2"  
ETCD_DATA_DIR="/var/lib/etcd/default.etcd" 
ETCD_LISTEN_PEER_URLS="https://192.168.217.101:2380" 
ETCD_LISTEN_CLIENT_URLS="https://192.168.217.101:2379" 
 
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.217.101:2380" 
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.217.101:2379" 
ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.217.100:2380,etcd-2=https://192.168.217.101:2380,etcd-3=https://192.168.217.102:2380" 
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new" 
#[Member]  
ETCD_NAME="etcd-3"  
ETCD_DATA_DIR="/var/lib/etcd/default.etcd" 
ETCD_LISTEN_PEER_URLS="https://192.168.217.102:2380" 
ETCD_LISTEN_CLIENT_URLS="https://192.168.217.102:2379" 
 
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.217.102:2380" 
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.217.102:2379" 
ETCD_INITIAL_CLUSTER="etcd-1=https://192.168.217.100:2380,etcd-2=https://192.168.217.101:2380,etcd-3=https://192.168.217.102:2380" 
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster" 
ETCD_INITIAL_CLUSTER_STATE="new" 
  • 每个节点启动并设置开机启动:
systemctl daemon-reload
systemctl start etcd
systemctl enable etcd
  • 每个节点查看集群状态:
systemctl status etcd.service

5.4 为ApI Server自签证书

  • 1️⃣自签证书颁发机构(CA):
  • 进入工作目录:
cd ~/TLS/k8s/
  • 自签CA:
cat > ca-config.json <<EOF
{
  "signing": {
    "default": {
      "expiry": "87600h"
    },
    "profiles": {
      "kubernetes": {
         "expiry": "87600h",
         "usages": [
            "signing",
            "key encipherment",
            "server auth",
            "client auth"
        ]
      }
    }
  }
}
EOF
cat > ca-csr.json <<EOF
{
    "CN": "kubernetes",
    "key": {
        "algo": "rsa",
        "size": 2048
    },
    "names": [
        {
            "C": "CN",
            "L": "Beijing",
            "ST": "Beijing",
            "O": "k8s",
            "OU": "System"
        }
    ]
}
EOF
  • 生成证书:
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -
  • 查看生成的证书:
ll *pem
  • 2️⃣使用自签CA签发etcd的https证书:
  • 创建证书申请文件:
cat > kube-proxy-csr.json << EOF
{
  "CN": "system:kube-proxy",
  "hosts": [],
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "L": "BeiJing",
      "ST": "BeiJing",
      "O": "k8s",
      "OU": "System"
    }
  ]
}
EOF
cat > server-csr.json<< EOF
{
    "CN": "kubernetes",
    "hosts": [
      "10.0.0.1",
      "127.0.0.1",
      "kubernetes",
      "kubernetes.default",
      "kubernetes.default.svc",
      "kubernetes.default.svc.cluster",
      "kubernetes.default.svc.cluster.local",
      "192.168.217.100",
      "192.168.217.101",
      "192.168.217.102",
      "192.168.217.1",
      "192.168.217.2",
      "192.168.31.198"
    ],
    "key": {
        "algo": "rsa",
        "size": 2048
    },
    "names": [
        {
            "C": "CN",
            "L": "BeiJing",
            "ST": "BeiJing",
            "O": "k8s",
            "OU": "System"
        }
    ]
}
EOF
  • 生成证书:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes server-csr.json | cfssljson -bare server
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy

5.5 部署Master组件

5.5.1 查看GitHub上的地址

5.5.2 下载并解压二进制包

mkdir -pv /opt/kubernetes/{bin,cfg,ssl,logs}
wget "https://dl.k8s.io/v1.18.10/kubernetes-server-linux-amd64.tar.gz"
tar -zxvf kubernetes-server-linux-amd64.tar.gz
cd kubernetes/server/bin
cp kube-apiserver kube-scheduler kube-controller-manager /opt/kubernetes/bin
cp kubectl /usr/bin/

5.5.3 部署kube-apiserver

  • 创建配置文件:
cat > /opt/kubernetes/cfg/kube-apiserver.conf << EOF
KUBE_APISERVER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--etcd-servers=https://192.168.217.100:2379,https://192.168.217.101:2379,https://192.168.217.102:2379 \\
--bind-address=192.168.217.100 \\
--secure-port=6443 \\
--advertise-address=192.168.217.100 \\
--allow-privileged=true \\
--service-cluster-ip-range=10.0.0.0/24 \\
--enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,ResourceQuota,NodeRestriction \\
--authorization-mode=RBAC,Node \\
--enable-bootstrap-token-auth=true \\
--token-auth-file=/opt/kubernetes/cfg/token.csv \\
--service-node-port-range=30000-32767 \\
--kubelet-client-certificate=/opt/kubernetes/ssl/server.pem \\
--kubelet-client-key=/opt/kubernetes/ssl/server-key.pem \\
--tls-cert-file=/opt/kubernetes/ssl/server.pem \\
--tls-private-key-file=/opt/kubernetes/ssl/server-key.pem \\
--client-ca-file=/opt/kubernetes/ssl/ca.pem \\
--service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--etcd-cafile=/opt/etcd/ssl/ca.pem \\
--etcd-certfile=/opt/etcd/ssl/server.pem \\
--etcd-keyfile=/opt/etcd/ssl/server-key.pem \\
--audit-log-maxage=30 \\
--audit-log-maxbackup=3 \\
--audit-log-maxsize=100 \\
--audit-log-path=/opt/kubernetes/logs/k8s-audit.log"
EOF
  • --logtostderr:启用日志。
  • --v:日志等级。
  • --log-dir:日志目录。
  • --etcd-servers:etcd集群地址。
  • --bind-address:监听地址。
  • --secure-port:https安全端口。
  • --advertise-address:集群通告地址。
  • --allow-privileged:启用授权。
  • --service-cluster-ip-range:Service虚拟IP地址段。
  • --enable-admission-plugins:准入控制模块。
  • --authorization-mode:认证授权,启用RBAC授权和节点自管理。
  • --enable-bootstrap-token-auth:启用TLS bootstrap机制。
  • --token-auth-file:bootstrap token文件。
  • --service-node-port-range:Sevice nodeport类型默认分配端口范围。
  • --kubelet-client-xxx:apiserver访问kubelet客户端整数。
  • --tls-xxx-file:apiserver https证书。
  • --etcd-xxxfile:连接etcd集群证书。
  • --audit-log-xxx:审计日志。
  • 复制刚才生成的文件到配置文件所在路径:
cp ~/TLS/k8s/ca*pem ~/TLS/k8s/server*pem ~/TLS/k8s/kube-proxy*pem /opt/kubernetes/ssl/

5.5.4 启用TLS Bootstrapping机制

  • Master上的apiserver启用TLS认证后,Node节点kubelet和kube-proxy要和kube-apiserver进行通信,必须使用CA签发的有效整数才可以,当Node节点很多的时候,这种客户端证书颁发需要大量工作,同样也会增加集群扩展复杂度。为了简化操作流程,k8s引入了TLS Bootstrapping机制来自动颁发客户端证书,kubelet会以一个低权限用户向apiserver申请证书,kubelet的证书由apiserver动态签署。
  • 制作token令牌:
head -c 16 /dev/urandom | od -An -t x | tr -d ' '
  • 创建token文件:
cat > /opt/kubernetes/cfg/token.csv << EOF
6cd622a46af13091337d98f0ac9da4d0,kubelet-bootstrap,10001,"system:nodebootstrapper"
EOF

5.5.5 systemd管理apiserver

cat > /usr/lib/systemd/system/kube-apiserver.service << EOF
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kube-apiserver.conf
ExecStart=/opt/kubernetes/bin/kube-apiserver \$KUBE_APISERVER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF

5.5.6 启动apiserver并设置开机启动

systemctl daemon-reload
systemctl start kube-apiserver
systemctl enable kube-apiserver

5.5.7 部署kube-controller-manager

  • 创建配置文件:
cat > /opt/kubernetes/cfg/kube-controller-manager.conf << EOF
KUBE_CONTROLLER_MANAGER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--leader-elect=true \\
--master=127.0.0.1:8080 \\
--bind-address=127.0.0.1 \\
--allocate-node-cidrs=true \\
--cluster-cidr=10.244.0.0/16 \\
--service-cluster-ip-range=10.0.0.0/24 \\
--cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \\
--cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--root-ca-file=/opt/kubernetes/ssl/ca.pem \\
--service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--experimental-cluster-signing-duration=87600h0m0s"
EOF
  • --master:通过本地非安全本地端口8080连接apiserver。
  • --leader-elect:当该组件启动多个的时候,自动选举。
  • --cluster-signing-cert-file和--cluster-signing-key-file:自动为kubelet颁发证书的CA,和apiserver保持一致。

5.5.8 systemd管理controller-manager

cat > /usr/lib/systemd/system/kube-controller-manager.service << EOF
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kube-controller-manager.conf
ExecStart=/opt/kubernetes/bin/kube-controller-manager \$KUBE_CONTROLLER_MANAGER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF

5.5.9 启动controller-manager并设置开机启动

systemctl daemon-reload
systemctl start kube-controller-manager
systemctl enable kube-controller-manager

5.5.10 部署kube-scheduler

  • 创建配置文件:
cat > /opt/kubernetes/cfg/kube-scheduler.conf << EOF
KUBE_SCHEDULER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--leader-elect=true \\\
--master=127.0.0.1:8080 \\
--bind-address=127.0.0.1"
EOF
  • --master:通过本地非安全本地端口 8080 连接 apiserver。
  • --leader-elect:当该组件启动多个时, 自动选举( HA) 。

5.5.11 systemd管理scheduler

  • 创建配置文件:
cat > /usr/lib/systemd/system/kube-scheduler.service << EOF
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kube-scheduler.conf
ExecStart=/opt/kubernetes/bin/kube-scheduler \$KUBE_SCHEDULER_OPTS
Restart=on-failure 
[Install]
WantedBy=multi-user.target
EOF

5.5.12 启动scheduler并设置开机启动

systemctl daemon-reload
systemctl start kube-scheduler
systemctl enable kube-scheduler

5.5.13 查看集群状态

  • 所有组件都已经启动成功,通过kubectl工具查看当前集群的组件状态:
kubectl get cs

5.6 Docker安装

  • 4.4.2安装Docker步骤一样(每个节点都需要安装Docker)。

5.7 部署Node组件

5.7.1 在所有Node节点创建工作目录

mkdir -pv /opt/kubernetes/{bin,cfg,ssl,logs}

5.7.2 从Master节点拷贝二进制文件

cd ~/TLS/k8s/kubernetes/server/bin
scp kubelet  kube-proxy root@192.168.217.101:/opt/kubernetes/bin
scp kubelet  kube-proxy root@192.168.217.102:/opt/kubernetes/bin
scp -r /opt/kubernetes/ssl/ root@192.168.217.101:/opt/kubernetes/ssl
scp -r /opt/kubernetes/ssl/ root@192.168.217.102:/opt/kubernetes/ssl

5.7.3 在Master节点生成bootstrap.kubeconfig和kube-proxy.kubeconfig文件#

  • 创建配置文件:
cat > ~/configure.sh << EOF
#! /bin/bash
# create TLS Bootstrapping Token
#----------------
#创建  kubelet bootstrapping 配置文件
export PATH=$PATH:/opt/kubernetes/bin
export KUBE_APISERVER="https://192.168.217.100:6443"
export BOOTSTRAP_TOKEN="6cd622a46af13091337d98f0ac9da4d0"
#创建绑定角色
kubectl create clusterrolebinding kubelet-bootstrap \
  --clusterrole=system:node-bootstrapper \
  --user=kubelet-bootstrap
# 设置 cluster 参数
kubectl config set-cluster kubernetes \
  --certificate-authority=/opt/kubernetes/ssl/ca.pem \
  --embed-certs=true \
  --server=\${KUBE_APISERVER} \
  --kubeconfig=bootstrap.kubeconfig
# 设置客户端认证参数
kubectl config set-credentials kubelet-bootstrap \
  --token=\${BOOTSTRAP_TOKEN} \
  --kubeconfig=bootstrap.kubeconfig
#设置上下文
kubectl config set-context default \
  --cluster=kubernetes \
  --user=kubelet-bootstrap \
  --kubeconfig=bootstrap.kubeconfig
kubectl config use-context default --kubeconfig=bootstrap.kubeconfig
#-------------
#创建 kube-proxy 配置文件
kubectl config set-cluster kubernetes \
  --certificate-authority=/opt/kubernetes/ssl/ca.pem \
  --embed-certs=true \
  --server=\${KUBE_APISERVER} \
  --kubeconfig=kube-proxy.kubeconfig
kubectl config set-credentials kube-proxy \
  --client-certificate=/opt/kubernetes/ssl/kube-proxy.pem \
  --client-key=/opt/kubernetes/ssl/kube-proxy-key.pem \
  --embed-certs=true \
  --kubeconfig=kube-proxy.kubeconfig
kubectl config set-context default \
  --cluster=kubernetes \
  --user=kube-proxy \
  --kubeconfig=kube-proxy.kubeconfig
kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
EOF
  • 执行脚本,并将bootstrap.kubeconfig和kube-proxy.kubeconfig文件复制到所有的Node节点:
scp bootstrap.kubeconfig  kube-proxy.kubeconfig root@192.168.217.101:/opt/kubernetes/cfg
scp bootstrap.kubeconfig  kube-proxy.kubeconfig root@192.168.217.102:/opt/kubernetes/cfg

5.7.4 所有Node节点部署kubelet

  • 对192.168.217.101节点来说,需要创建如下文件:
cat > /opt/kubernetes/cfg/kubelet.conf << EOF
KUBELET_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--hostname-override=k8s-node1 \\
--network-plugin=cni \\
--kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\
--bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\
--cert-dir=/opt/kubernetes/ssl \\
--pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google-containers/pause-amd64:3.0"
EOF
  • 对192.168.217.102节点来说,需要创建如下文件:
cat > /opt/kubernetes/cfg/kubelet.conf << EOF
KUBELET_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--hostname-override=k8s-node2 \\
--network-plugin=cni \\
--kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\
--bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\
--cert-dir=/opt/kubernetes/ssl \\
--pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google-containers/pause-amd64:3.0"
EOF
  • --hostname-override:显示名称,集群中唯一。
  • --network-plugin:启用CNI网络插件。
  • --kubeconfig:用于连接apiserver。
  • --cert-dir:kubelet证书生成目录。
  • --pod-infra-container-image:管理Pod网络容器的镜像。

5.7.5 所有Node节点systemd管理kubelet

  • 创建配置文件:
cat > /usr/lib/systemd/system/kubelet.service << EOF
[Unit]
Description=Kubernetes Kubelet
After=docker.service
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kubelet.conf
ExecStart=/opt/kubernetes/bin/kubelet \$KUBELET_OPTS
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF

5.7.6 所有Node节点启动kubelet并设置开机自启

systemctl daemon-reload
systemctl enable kubelet
systemctl start kubelet

5.7.7 为所有Node节点部署kube-proxy

  • 对192.168.217.101节点来说,需要创建如下文件:
cat > /opt/kubernetes/cfg/kube-proxy.conf << EOF
KUBE_PROXY_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--kubeconfig=/opt/kubernetes/cfg/kube-proxy.kubeconfig \\
--hostname-override=k8s-node1" 
EOF
  • 对192.168.217.102节点来说,需要创建如下文件:
cat > /opt/kubernetes/cfg/kube-proxy.conf << EOF
KUBE_PROXY_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--kubeconfig=/opt/kubernetes/cfg/kube-proxy.kubeconfig \\
--hostname-override=k8s-node2"
EOF

5.7.8 所有Node节点systemd管理kube-proxy#

  • 创建配置文件:
cat > /usr/lib/systemd/system/kube-proxy.service << EOF
[Unit]
Description=Kubernetes Proxy
After=network.target
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kube-proxy.conf
ExecStart=/opt/kubernetes/bin/kube-proxy \$KUBE_PROXY_OPTS
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF

5.7.9 所有Node节点启动kube-proxy并设置开机自启#

systemctl daemon-reload
systemctl enable kube-proxy
systemctl start kube-proxy

5.8 部署CNI网络插件

  • 4.7部署CNI网络插件步骤一样。

5.9 在Master批量新Node kubelet证书申请

kubectl get csr

kubectl certificate approve <NAME>

相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
云原生实践公开课
课程大纲 开篇:如何学习并实践云原生技术 基础篇: 5 步上手 Kubernetes 进阶篇:生产环境下的 K8s 实践 相关的阿里云产品:容器服务&nbsp;ACK 容器服务&nbsp;Kubernetes&nbsp;版(简称&nbsp;ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情:&nbsp;https://www.aliyun.com/product/kubernetes
相关文章
|
1天前
|
存储 Kubernetes 监控
Kubernetes 集群的持续性能优化实践
【5月更文挑战第28天】 在动态且复杂的微服务架构中,保持 Kubernetes 集群的高性能和稳定性是一项挑战。本文将探讨一系列实用的性能监测、调优策略以及最佳实践,旨在帮助运维专家确保其容器化应用能在 Kubernetes 环境中达到最优表现。我们将通过分析真实案例,总结出一套系统化的优化流程,并介绍相关工具与技术,使读者能够对 Kubernetes 集群进行有效的性能监控和提升。
|
1天前
|
存储 监控 Kubernetes
Kubernetes 集群监控与日志管理实践
【5月更文挑战第27天】 在微服务架构日益普及的当下,容器化技术与编排工具如Kubernetes已成为现代云原生应用的基石。然而,随着集群规模的不断扩大和复杂性的增加,如何有效监控和管理这些动态变化的服务成为了维护系统稳定性的关键。本文将深入探讨Kubernetes环境下的监控策略和日志管理的最佳实践,旨在为运维人员提供一套系统的解决思路,确保应用性能的最优化和问题的快速定位。
|
1天前
|
Kubernetes 物联网 区块链
未来技术的脉动:区块链、物联网和虚拟现实的新纪元Kubernetes 集群性能优化实践
【5月更文挑战第27天】 随着科技的飞速发展,新兴技术如区块链、物联网(IoT)和虚拟现实(VR)正在重塑我们的世界。这些技术不仅在逐步成熟,而且在各个行业中找到了创新的应用。区块链技术以其不可篡改和去中心化的特性,为金融交易、供应链管理和身份验证提供了新的解决方案。物联网通过智能设备和系统的互联互通,优化了资源管理并提升了生活品质。而虚拟现实技术则在娱乐、教育和医疗等领域创造了沉浸式体验。本文将深入探讨这些技术的发展趋势和多样化应用场景,展望它们如何共同塑造未来社会的面貌。
|
2天前
|
存储 监控 Kubernetes
Kubernetes 集群的监控与性能优化策略网络安全与信息安全:防范漏洞、加强加密、提升安全意识
【5月更文挑战第27天】 在微服务架构日益普及的背景下,容器编排工具如Kubernetes成为运维工作的核心。然而,随之而来的是监控复杂性增加和性能调优的挑战。本文将深入探讨针对Kubernetes集群的监控方案和性能优化技巧,旨在帮助读者构建一个高效、稳定的容器化环境。通过分析集群资源消耗模式,结合实时监控数据,本文提出了一系列实用的优化措施,以期提高系统响应速度,降低资源浪费,确保服务的高可用性。
|
2天前
|
存储 Kubernetes 监控
Kubernetes 集群的持续性能优化实践
【5月更文挑战第26天】 在动态且复杂的微服务架构中,确保 Kubernetes 集群的高性能和稳定性是至关重要的。本文将探讨一系列实用的策略和工具,用于监控、分析和优化 Kubernetes 集群的性能。通过深入理解资源分配、调度策略以及网络和存储配置的影响,我们能够揭示提升集群效率的关键步骤。文章将结合真实案例,展示如何通过细致的调优过程,实现服务的持续性能提升。
|
4天前
|
存储 Kubernetes 调度
Kubernetes 集群的持续性能优化策略
【5月更文挑战第25天】 随着容器化技术的普及,越来越多的企业采用 Kubernetes 作为其服务部署和运维的标准平台。然而,随着集群规模的增长和应用复杂性的上升,性能问题逐渐浮现,成为系统管理员关注的焦点。本文将探讨在 Kubernetes 环境中进行持续性能优化的实践方法,旨在为读者提供一系列实用的调优技巧,帮助其提升集群的稳定性与效率。通过深入分析资源分配、调度优化、网络效率以及存储管理等方面的调优手段,我们将展示如何构建一个高效、可扩展的 Kubernetes 集群。
|
4天前
|
Prometheus 监控 Kubernetes
Kubernetes 集群的监控与日志管理实践
【5月更文挑战第25天】在现代微服务架构中,容器编排工具如Kubernetes已成为部署、管理和扩展应用程序的关键。随着其广泛应用,对集群的监控和日志管理的需求也日益增长。本文将探讨如何利用Prometheus和Fluentd等开源工具实现对Kubernetes集群的有效监控和日志收集,旨在为运维工程师提供一套可行的解决方案,以保障集群的稳定性和提高故障排查效率。
|
4天前
|
运维 监控 Kubernetes
Kubernetes 集群的监控与维护最佳实践
【5月更文挑战第25天】 在现代微服务架构中,容器编排平台如Kubernetes已成为不可或缺的组成部分。随着其广泛应用,对集群进行有效的监控和维护变得至关重要。本文将探讨针对Kubernetes集群监控的最佳工具选择、常见问题的诊断方法以及预防性维护措施。通过深入分析Prometheus和Grafana在性能监控中的应用,以及介绍如何使用ELK栈进行日志管理,文章旨在为运维专家提供一系列实用的策略和步骤,以确保集群的健康和优化性能。
|
5天前
|
Prometheus 运维 Kubernetes
Kubernetes 集群的监控与日志管理最佳实践
【5月更文挑战第23天】 在容器化和微服务架构日益普及的当下,Kubernetes 已成为众多企业的首选平台。随之而来的是对集群性能、资源利用和运行状况的持续监控需求,以及日志管理的重要性。本文将探讨在 Kubernetes 环境中实现有效监控和日志管理的策略,涵盖关键组件的选择、配置优化及故障排查流程,旨在为运维工程师提供一套综合解决方案,确保集群的稳定性和高可用性。
|
6天前
|
存储 运维 Kubernetes
Kubernetes 集群的持续性能优化策略
【5月更文挑战第23天】 在动态且日益复杂的云计算环境中,维护 Kubernetes 集群的性能是一个不断进化的挑战。本文深入探讨了一系列实用的技术手段和最佳实践,旨在帮助运维专家持续优化其 Kubernetes 环境。通过分析关键组件、资源调度策略、网络效率以及存储优化等方面,我们提出了一套综合性能提升方案。这些策略不仅有助于提高系统的响应能力和资源利用率,还能确保长期的稳定运行。