在ModelScope-FunASR中,语音识别系统中的声音活动检测

简介: 在ModelScope-FunASR中,语音识别系统中的声音活动检测

在ModelScope-FunASR中,语音识别系统中的声音活动检测(Voice Activity Detection,VAD)模块负责检测和分离语音信号中的语音和非语音部分,这对于后续的语音识别至关重要。然而,有时VAD可能会将一些本应被视为单一语音段的句子错误地分割成两段,这可能是由于VAD的灵敏度设置不当或者背景噪音的影响。

为了解决这个问题,您可以尝试调整VAD的灵敏度参数,这通常涉及到能量阈值(energy threshold)和过零率(zero-crossing rate)的调整。这两个参数控制了VAD判断语音帧的依据:能量阈值用于区分静音和有声片段,而过零率用于区分清音和浊音。

  1. 能量阈值:如果能量阈值设置得过高,VAD可能会错过一些实际的语音段;如果设置得过低,则可能会将非语音段误判为语音。

  2. 过零率:过零率高的区域通常表示语音存在,但过高或过低的过零率阈值都可能导致错误的语音判决。

在ModelScope-FunASR中,您可以通过调整VAD模型的参数来优化这一行为。具体来说,您可以尝试增大能量阈值或减小过零率阈值,这样可以使VAD更倾向于将连续的语音段判断为同一语音事件,从而减少错误切割的情况。

需要注意的是,调整这些参数可能会影响VAD对其他类型信号的判断,比如可能会使VAD误将背景噪音判断为语音,或者错过一些实际上的非语音段。因此,调整时应综合考虑语音识别的准确性和鲁棒性,可能需要多次试验以找到最适合您具体应用场景的参数设置。

此外,您还可以考虑使用不同的VAD实现,例如WebRTC VAD或深度学习的VAD方法VADNet,它们可能在处理连续语音和噪声环境方面有更优秀的表现。

最后,对于VAD的优化,除了参数调整外,还可以尝试数据增强、模型微调等技巧来改善VAD的性能,使其更好地适应您的具体应用场景。

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
目录
相关文章
|
Web App开发 机器学习/深度学习 语音技术
在ModelScope-FunASR中,语音识别系统中的声音活动检测
在ModelScope-FunASR中,语音识别系统中的声音活动检测【4月更文挑战第3天】
821 1
|
自然语言处理 语音技术 开发者
开源上新|FunASR多语言离线文件转写软件包
开源上新|FunASR多语言离线文件转写软件包
|
语音技术 异构计算
FunASR项目支持实时语音识别
FunASR项目支持实时语音识别【1月更文挑战第7篇】
4859 1
|
人工智能 达摩院 并行计算
中文语音识别转文字的王者,阿里达摩院FunAsr足可与Whisper相颉顽
君不言语音识别技术则已,言则必称Whisper,没错,OpenAi开源的Whisper确实是世界主流语音识别技术的魁首,但在中文领域,有一个足以和Whisper相颉顽的项目,那就是阿里达摩院自研的FunAsr。 FunAsr主要依托达摩院发布的Paraformer非自回归端到端语音识别模型,它具有高精度、高效率、便捷部署的优点,支持快速构建语音识别服务,最重要的是,FunASR支持标点符号识别、低语音识别、音频-视觉语音识别等功能,也就是说,它不仅可以实现语音转写,还能在转写后进行标注,一石二鸟。
中文语音识别转文字的王者,阿里达摩院FunAsr足可与Whisper相颉顽
|
网络协议
MossFormer2语音分离模型
MossFormer2语音分离模型
1094 4
|
12月前
|
人工智能 物联网 测试技术
FireRedASR:精准识别普通话、方言和歌曲歌词!小红书开源工业级自动语音识别模型
小红书开源的工业级自动语音识别模型,支持普通话、中文方言和英语,采用 Encoder-Adapter-LLM 和 AED 架构,实现 SOTA 性能。
3792 17
FireRedASR:精准识别普通话、方言和歌曲歌词!小红书开源工业级自动语音识别模型
|
11月前
|
人工智能 API 语音技术
WhisperChain:开源 AI 实时语音转文字工具!自动消噪优化文本,效率翻倍
WhisperChain 是一款基于 Whisper.cpp 和 LangChain 的开源语音识别工具,能够实时将语音转换为文本,并自动清理和优化文本内容,适用于会议记录、写作辅助等多种场景。
2953 2
WhisperChain:开源 AI 实时语音转文字工具!自动消噪优化文本,效率翻倍
|
人工智能 监控 算法
3D-Speaker:阿里通义开源的多模态说话人识别项目,支持说话人识别、语种识别、多模态识别、说话人重叠检测和日志记录
3D-Speaker是阿里巴巴通义实验室推出的多模态说话人识别开源项目,结合声学、语义和视觉信息,提供高精度的说话人识别和语种识别功能。项目包含工业级模型、训练和推理代码,以及大规模多设备、多距离、多方言的数据集,适用于多种应用场景。
3506 18
3D-Speaker:阿里通义开源的多模态说话人识别项目,支持说话人识别、语种识别、多模态识别、说话人重叠检测和日志记录
|
机器学习/深度学习 人工智能 算法
技术开源|FunASR升级第三代热词方案
技术开源|FunASR升级第三代热词方案
3928 62
|
人工智能 自然语言处理 机器人
手把手带你搭建一个语音对话机器人,5分钟定制个人AI小助手(新手入门篇)
本文介绍了如何从零开始搭建一个语音对话机器人,涵盖自动语音识别(ASR)、自然语言处理(NLP)和文本到语音合成(TTS)三大核心模块。通过使用开源工具如FunASR、LLaMA3-8B和ChatTTS,以及FastAPI和Gradio等技术,详细指导读者轻松实现个人AI小助手的构建,适合技术新手快速上手。
6070 1