mysql中force index强制索引

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: mysql中force index强制索引
对于经常使用oracle的朋友可能知道,oracle的hint功能种类很多,对于优化sql语句提供了很多方法。同样,在mysql里,也有类似的hint功能。
其他强制操作,优先操作如下:
mysql常用的hint
对于经常使用oracle的朋友可能知道,oracle的hint功能种类很多,对于优化sql语句提供了很多方法。同样,在mysql里,也有类似的hint功能。下面介绍一些常用的。
强制索引 FORCE INDEX

SELECT * FROM TABLE1 FORCE INDEX (FIELD1) …
以上的SQL语句只使用建立在FIELD1上的索引,而不使用其它字段上的索引。
忽略索引 IGNORE INDEX


SELECT * FROM TABLE1 IGNORE INDEX (FIELD1, FIELD2) …
在上面的SQL语句中,TABLE1表中FIELD1和FIELD2上的索引不被使用。
关闭查询缓冲 SQL_NO_CACHE


SELECT SQL_NO_CACHE field1, field2 FROM TABLE1;
有一些SQL语句需要实时地查询数据,或者并不经常使用(可能一天就执行一两次),这样就需要把缓冲关了,不管这条SQL语句是否被执行过,服务器都不会在缓冲区中查找,每次都会执行它。
强制查询缓冲 SQL_CACHE


SELECT SQL_CALHE * FROM TABLE1;
如果在my.ini中的query_cache_type设成2,这样只有在使用了SQL_CACHE后,才使用查询缓冲。
优先操作 HIGH_PRIORITY
HIGH_PRIORITY可以使用在select和insert操作中,让MYSQL知道,这个操作优先进行。


SELECT HIGH_PRIORITY * FROM TABLE1;
滞后操作 LOW_PRIORITY
LOW_PRIORITY可以使用在insert和update操作中,让mysql知道,这个操作滞后。


update LOW_PRIORITY table1 set field1= where field1= …
延时插入 INSERT DELAYED


INSERT DELAYED INTO table1 set field1= …
INSERT DELAYED INTO,是客户端提交数据给MySQL,MySQL返回OK状态给客户端。而这是并不是已经将数据插入表,而是存储在内存里面等待排队。当mysql有空余时,再插入。另一个重要的好处是,来自许多客户端的插入被集中在一起,并被编写入一个块。这比执行许多独立的插入要快很多。坏处是,不能返回自动递增的ID,以及系统崩溃时,MySQL还没有来得及插入数据的话,这些数据将会丢失。
强制连接顺序 STRAIGHT_JOIN


SELECT TABLE1.FIELD1, TABLE2.FIELD2 FROM TABLE1 STRAIGHT_JOIN TABLE2 WHERE …
由上面的SQL语句可知,通过STRAIGHT_JOIN强迫MySQL按TABLE1、TABLE2的顺序连接表。如果你认为按自己的顺序比MySQL推荐的顺序进行连接的效率高的话,就可以通过STRAIGHT_JOIN来确定连接顺序。
强制使用临时表 SQL_BUFFER_RESULT


SELECT SQL_BUFFER_RESULT * FROM TABLE1 WHERE …
当我们查询的结果集中的数据比较多时,可以通过SQL_BUFFER_RESULT.选项强制将结果集放到临时表中,这样就可以很快地释放MySQL的表锁(这样其它的SQL语句就可以对这些记录进行查询了),并且可以长时间地为客户端提供大记录集。
分组使用临时表 SQL_BIG_RESULT和SQL_SMALL_RESULT


SELECT SQL_BUFFER_RESULT FIELD1, COUNT(*) FROM TABLE1 GROUP BY FIELD1;
一般用于分组或DISTINCT关键字,这个选项通知MySQL,如果有必要,就将查询结果放到临时表中,甚至在临时表中进行排序。SQL_SMALL_RESULT比起SQL_BIG_RESULT差不多,很少使用。


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
25天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
1月前
|
存储 NoSQL 关系型数据库
为什么MySQL不使用红黑树做索引
本文详细探讨了MySQL索引机制,解释了为何添加索引能提升查询效率。索引如同数据库的“目录”,在数据量庞大时提高查询速度。文中介绍了常见索引数据结构:哈希表、有序数组和搜索树(包括二叉树、平衡二叉树、红黑树、B-树和B+树)。重点分析了B+树在MyISAM和InnoDB引擎中的应用,并讨论了聚簇索引、非聚簇索引、联合索引及最左前缀原则。最后,还介绍了LSM-Tree在高频写入场景下的优势。通过对比多种数据结构,帮助理解不同场景下的索引选择。
75 6
|
1月前
|
SQL 关系型数据库 MySQL
案例剖析:MySQL唯一索引并发插入导致死锁!
案例剖析:MySQL唯一索引并发插入导致死锁!
案例剖析:MySQL唯一索引并发插入导致死锁!
|
1月前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
61 3
Mysql(4)—数据库索引
|
16天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
83 1
|
27天前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
56 1
|
17天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
47 0
|
1月前
|
监控 关系型数据库 MySQL
MySQL数据表索引命名规范
MySQL数据表索引命名规范
57 1
|
1月前
|
存储 SQL 关系型数据库
mysql中主键索引和联合索引的原理与区别
本文详细介绍了MySQL中的主键索引和联合索引原理及其区别。主键索引按主键值排序,叶节点仅存储数据区,而索引页则存储索引和指向数据域的指针。联合索引由多个字段组成,遵循最左前缀原则,可提高查询效率。文章还探讨了索引扫描原理、索引失效情况及设计原则,并对比了InnoDB与MyISAM存储引擎中聚簇索引和非聚簇索引的特点。对于优化MySQL性能具有参考价值。
|
1月前
|
存储 关系型数据库 MySQL
MySQL中的索引及怎么使用
综上所述,MySQL索引的正确使用是数据库性能调优的关键一环。通过合理设计索引结构,结合业务需求和数据特性,可以有效提升数据库查询响应速度,降低系统资源消耗,从而确保应用的高效运行。
66 1