JavaSE I/O流 字符流

简介: Java8 快速实现List转map 、分组、过滤等操作

利用java8新特性,可以用简洁高效的代码来实现一些数据处理。

 

定义1个Apple对象:

 

public class Apple {
    private Integer id;
    private String name;
    private BigDecimal money;
    private Integer num;
    public Apple(Integer id, String name, BigDecimal money, Integer num) {
        this.id = id;
        this.name = name;
        this.money = money;
        this.num = num;
    }
}

 

添加一些测试数据:

 

List appleList = new ArrayList<>();//存放apple对象集合
 
Apple apple1 =  new Apple(1,"苹果1",new BigDecimal("3.25"),10);
Apple apple12 = new Apple(1,"苹果2",new BigDecimal("1.35"),20);
Apple apple2 =  new Apple(2,"香蕉",new BigDecimal("2.89"),30);
Apple apple3 =  new Apple(3,"荔枝",new BigDecimal("9.99"),40);
 
appleList.add(apple1);
appleList.add(apple12);
appleList.add(apple2);
appleList.add(apple3);

 

1、分组

 

List里面的对象元素,以某个属性来分组,例如,以id分组,将id相同的放在一起:

 

//List 以ID分组 Map<integer,list></integer,list
Map<integer, list> groupBy = appleList.stream().collect(Collectors.groupingBy(Apple::getId));
 
System.err.println("groupBy:"+groupBy);
{1=[Apple{id=1, name='苹果1', money=3.25, num=10}, Apple{id=1, name='苹果2', money=1.35, num=20}], 2=[Apple{id=2, name='香蕉', money=2.89, num=30}], 3=[Apple{id=3, name='荔枝', money=9.99, num=40}]}
</integer, list

 

2、List转Map

 

id为key,apple对象为value,可以这么做:

 

/**
 * List -> Map
 * 需要注意的是:
 * toMap 如果集合对象有重复的key,会报错Duplicate key ....
 *  apple1,apple12的id都为1。
 *  可以用 (k1,k2)->k1 来设置,如果有重复的key,则保留key1,舍弃key2
 */
Map appleMap = appleList.stream().collect(Collectors.toMap(Apple::getId, a -> a,(k1,k2)->k1));

 

打印appleMap

 

{1=Apple{id=1, name='苹果1', money=3.25, num=10}, 2=Apple{id=2, name='香蕉', money=2.89, num=30}, 3=Apple{id=3, name='荔枝', money=9.99, num=40}}

 

3、过滤Filter

 

从集合中过滤出来符合条件的元素:

 

//过滤出符合条件的数据
List filterList = appleList.stream().filter(a -> a.getName().equals("香蕉")).collect(Collectors.toList());
 
System.err.println("filterList:"+filterList);
[Apple{id=2, name='香蕉', money=2.89, num=30}]

 

4、求和

 

将集合中的数据按照某个属性求和:

 

//计算 总金额
BigDecimal totalMoney = appleList.stream().map(Apple::getMoney).reduce(BigDecimal.ZERO, BigDecimal::add);
System.err.println("totalMoney:"+totalMoney);  //totalMoney:17.48

 

5、查找流中最大 最小值

 

Collectors.maxBy 和 Collectors.minBy 来计算流中的最大或最小值。

 

Optional maxDish = Dish.menu.stream().
      collect(Collectors.maxBy(Comparator.comparing(Dish::getCalories)));
maxDish.ifPresent(System.out::println);
 
Optional minDish = Dish.menu.stream().
      collect(Collectors.minBy(Comparator.comparing(Dish::getCalories)));
minDish.ifPresent(System.out::println);

 

6、去重

 

import static java.util.Comparator.comparingLong;
import static java.util.stream.Collectors.collectingAndThen;
import static java.util.stream.Collectors.toCollection;
 
// 根据id去重
     List unique = appleList.stream().collect(
                collectingAndThen(
                        toCollection(() -> new TreeSet<>(comparingLong(Apple::getId))), ArrayList::new)
        );
相关文章
|
11天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
10天前
|
存储 人工智能 搜索推荐
终身学习型智能体
当前人工智能前沿研究的一个重要方向:构建能够自主学习、调用工具、积累经验的小型智能体(Agent)。 我们可以称这种系统为“终身学习型智能体”或“自适应认知代理”。它的设计理念就是: 不靠庞大的内置知识取胜,而是依靠高效的推理能力 + 动态获取知识的能力 + 经验积累机制。
363 131
|
10天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
444 131
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
|
4天前
|
存储 安全 前端开发
如何将加密和解密函数应用到实际项目中?
如何将加密和解密函数应用到实际项目中?
206 138
|
10天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
407 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
4天前
|
存储 JSON 安全
加密和解密函数的具体实现代码
加密和解密函数的具体实现代码
212 136
|
22天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1364 8
|
9天前
|
监控 JavaScript Java
基于大模型技术的反欺诈知识问答系统
随着互联网与金融科技发展,网络欺诈频发,构建高效反欺诈平台成为迫切需求。本文基于Java、Vue.js、Spring Boot与MySQL技术,设计实现集欺诈识别、宣传教育、用户互动于一体的反欺诈系统,提升公众防范意识,助力企业合规与用户权益保护。