Java之戳中痛点之 synchronized 深度解析

简介: Java之戳中痛点之 synchronized 深度解析

概览:

 

  • 简介:作用、地位、不控制并发的影响
  • 用法:对象锁和类锁
  • 多线程访问同步方法的7种情况
  • 性质:可重入、不可中断
  • 原理:加解锁原理、可重入原理、可见性原理
  • 缺陷:效率低、不够灵活、无法预判是否成功获取到锁
  • 如何选择Lock或Synchronized
  • 如何提高性能、JVM如何决定哪个线程获取锁
  • 总结

 

后续会有代码演示,测试环境 JDK8、IDEA

 

一、简介

 

1、作用

 

能够保证在同一时刻最多只有一个线程执行该代码,以保证并发安全的效果。

 

2、地位

 

  • Synchronized是Java关键字,Java原生支持
  • 最基本的互斥同步手段
  • 并发编程的元老级别

 

3、不控制并发的影响

 

测试:两个线程同时a++,猜一下结果

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 不使用synchronized,两个线程同时a++
 *
 * @author JSON
 */
public class SynchronizedTest1 implements Runnable{
    static SynchronizedTest1 st = new SynchronizedTest1();
 
    static int a = 0;
 
    /**
     * 不使用synchronized,两个线程同时a++
     */
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(st);
        Thread t2 = new Thread(st);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println(a);
    }
 
    @Override
    public void run(){
        for(int i=0; i<10000; i++){
            a++;
        }
    }
}

 

预期是20000,但多次执行的结果都小于20000

 

10108
11526
10736
...

 

二、用法:对象锁和类锁

 

1、对象锁

 

  • 代码块形式:手动指定锁对象
  • 方法锁形式:synchronized修饰方法,锁对象默认为this

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 对象锁实例: 代码块形式
 *
 * @author JSON
 */
public class SynchronizedTest2 implements Runnable{
    static SynchronizedTest2 st = new SynchronizedTest2();
 
    public static void main(String[] args) {
        Thread t1 = new Thread(st);
        Thread t2 = new Thread(st);
        t1.start();
        t2.start();
        while(t1.isAlive() || t2.isAlive()){
 
        }
        System.out.println("run over");
 
    }
 
    @Override
    public void run(){
        synchronized (this){
            System.out.println("开始执行:" + Thread.currentThread().getName());
            try {
                // 模拟执行内容
                Thread.sleep(3000);
            }catch (Exception e){
                e.printStackTrace();
            }
            System.out.println("执行结束:" + Thread.currentThread().getName());
        }
    }
}

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 对象锁实例:synchronized方法
 * @author JSON
 */
public class SynchronizedTest3 implements Runnable{
    static SynchronizedTest3 st = new SynchronizedTest3();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(st);
        Thread t2 = new Thread(st);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method();
    }
 
    public synchronized void method(){
        System.out.println("开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("执行结束:" + Thread.currentThread().getName());
    }
}

 

结果:

 

开始执行:Thread-0
执行结束:Thread-0
开始执行:Thread-1
执行结束:Thread-1
run over

 

2、类锁

 

概念:Java类可能有多个对象,但只有一个Class对象

 

本质:所谓的类锁,不过是Class对象的锁而已

 

用法和效果:类锁只能在同一时刻被一个对象拥有

 

形式1:synchronized加载static方法上

 

形式2:synchronized(*.class)代码块

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 类锁:synchronized加载static方法上
 *
 * @author JSON
 */
public class SynchronizedTest4 implements Runnable{
 
    static SynchronizedTest4 st1 = new SynchronizedTest4();
    static SynchronizedTest4 st2 = new SynchronizedTest4();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(st1);
        Thread t2 = new Thread(st2);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method();
    }
 
    public static synchronized void method(){
        System.out.println("开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("执行结束:" + Thread.currentThread().getName());
    }
}

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 类锁:synchronized(*.class)代码块
 *
 * @author JSON
 */
public class SynchronizedTest5 implements Runnable{
    static SynchronizedTest4 st1 = new SynchronizedTest4();
    static SynchronizedTest4 st2 = new SynchronizedTest4();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(st1);
        Thread t2 = new Thread(st2);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method();
    }
 
    public void method(){
        synchronized(SynchronizedTest5.class){
            System.out.println("开始执行:" + Thread.currentThread().getName());
            try {
                // 模拟执行内容
                Thread.sleep(3000);
            }catch (Exception e){
                e.printStackTrace();
            }
            System.out.println("执行结束:" + Thread.currentThread().getName());
        }
    }
}

 

结果:

 

开始执行:Thread-0
执行结束:Thread-0
开始执行:Thread-1
执行结束:Thread-1
run over

三、多线程访问同步方法的7种情况

 

  1. 两个线程同时访问一个对象的相同的synchronized方法
  2. 两个线程同时访问两个对象的相同的synchronized方法
  3. 两个线程同时访问两个对象的相同的static的synchronized方法
  4. 两个线程同时访问同一对象的synchronized方法与非synchronized方法
  5. 两个线程访问同一对象的不同的synchronized方法
  6. 两个线程同时访问同一对象的static的synchronized方法与非static的synchronized方法
  7. 方法抛出异常后,会释放锁吗

 

仔细看下面示例代码结果输出的结果,注意输出时间间隔,来预测结论

 

场景1:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 两个线程同时访问一个对象的相同的synchronized方法
 *
 * @author JSON
 */
public class SynchronizedScene1 implements Runnable{
    static SynchronizedScene1 ss = new SynchronizedScene1();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss);
        Thread t2 = new Thread(ss);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method();
    }
 
    public synchronized void method(){
        System.out.println("开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("执行结束:" + Thread.currentThread().getName());
    }
}

 

场景2:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 两个线程同时访问两个对象的相同的synchronized方法
 *
 * @author JSON
 */
public class SynchronizedScene2 implements Runnable{
    static SynchronizedScene2 ss1 = new SynchronizedScene2();
    static SynchronizedScene2 ss2 = new SynchronizedScene2();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss1);
        Thread t2 = new Thread(ss2);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method();
    }
 
    public synchronized void method(){
        System.out.println("开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("执行结束:" + Thread.currentThread().getName());
    }
}

 

场景3:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 两个线程同时访问两个对象的相同的static的synchronized方法
 *
 * @author JSON
 */
public class SynchronizedScene3 implements Runnable{
    static SynchronizedScene3 ss1 = new SynchronizedScene3();
    static SynchronizedScene3 ss2 = new SynchronizedScene3();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss1);
        Thread t2 = new Thread(ss2);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method();
    }
 
    public synchronized static void method(){
        System.out.println("开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("执行结束:" + Thread.currentThread().getName());
    }
}

 

场景4:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 两个线程同时访问同一对象的synchronized方法与非synchronized方法
 *
 * @author JSON
 */
public class SynchronizedScene4 implements Runnable{
    static SynchronizedScene4 ss1 = new SynchronizedScene4();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss1);
        Thread t2 = new Thread(ss1);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        // 模拟两个线程同时访问 synchronized方法与非synchronized方法
        if(Thread.currentThread().getName().equals("Thread-0")){
            method1();
        }else{
            method2();
        }
    }
 
    public void method1(){
        System.out.println("method1开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("method1执行结束:" + Thread.currentThread().getName());
    }
 
    public synchronized void method2(){
        System.out.println("method2开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("method2执行结束:" + Thread.currentThread().getName());
    }
}

 

场景5:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 两个线程访问同一对象的不同的synchronized方法
 *
 * @author JSON
 */
public class SynchronizedScene5 implements Runnable{
    static SynchronizedScene5 ss1 = new SynchronizedScene5();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss1);
        Thread t2 = new Thread(ss1);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        // 模拟两个线程同时访问不同的synchronized方法
        if(Thread.currentThread().getName().equals("Thread-0")){
            method1();
        }else{
            method2();
        }
    }
 
    public synchronized void method1(){
        System.out.println("method1开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("method1执行结束:" + Thread.currentThread().getName());
    }
 
    public synchronized void method2(){
        System.out.println("method2开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("method2执行结束:" + Thread.currentThread().getName());
    }
}

 

场景6:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 两个线程同时访问同一对象的static的synchronized方法与非static的synchronized方法
 *
 * @author JSON
 */
public class SynchronizedScene6 implements Runnable{
    static SynchronizedScene6 ss1 = new SynchronizedScene6();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss1);
        Thread t2 = new Thread(ss1);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        // 模拟两个线程同时访问static的synchronized方法与非static的synchronized方法
        if(Thread.currentThread().getName().equals("Thread-0")){
            method1();
        }else{
            method2();
        }
    }
 
    public static synchronized void method1(){
        System.out.println("method1开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("method1执行结束:" + Thread.currentThread().getName());
    }
 
    public synchronized void method2(){
        System.out.println("method2开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("method2执行结束:" + Thread.currentThread().getName());
    }
}

 

场景7:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 方法抛出异常后,会释放锁吗
 *
 * @author JSON
 */
public class SynchronizedScene7 implements Runnable{
    static SynchronizedScene7 ss1 = new SynchronizedScene7();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss1);
        Thread t2 = new Thread(ss1);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method1();
    }
 
    public synchronized void method1(){
        System.out.println("method1开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        // 模拟异常
        throw new RuntimeException();
        //System.out.println("method1执行结束:" + Thread.currentThread().getName());
    }
}

总结:

 

1、两个线程同时访问一个对象的相同的synchronized方法

同一实例拥有同一把锁,其他线程必然等待,顺序执行

 

2、两个线程同时访问两个对象的相同的synchronized方法

不同的实例拥有的锁是不同的,所以不影响,并行执行

 

3、两个线程同时访问两个对象的相同的static的synchronized方法

静态同步方法,是类锁,所有实例是同一把锁,其他线程必然等待,顺序执行

 

4、两个线程同时访问同一对象的synchronized方法与非synchronized方法

 

非synchronized方法不受影响,并行执行

 

5、两个线程访问同一对象的不同的synchronized方法

 

同一实例拥有同一把锁,所以顺序执行(说明:锁的是this对象==同一把锁)

 

6、两个线程同时访问同一对象的static的synchronized方法与非static的synchronized方法

 

static同步方法是类锁,非static是对象锁,原理上是不同的锁,所以不受影响,并行执行

 

7、方法抛出异常后,会释放锁吗

 

会自动释放锁,这里区别Lock,Lock需要显示的释放锁

 

3个核心思想:

 

  • 一把锁只能同时被一个线程获取,没有拿到锁的线程必须等待(对应1、5的情景)
  • 每个实例都对应有自己的一把锁,不同的实例之间互不影响;例外:锁对象是*.class以及synchronized被static修饰的时候,所有对象共用同一把锁(对应2、3、4、6情景)
  • 无论是方法正常执行完毕还是方法抛出异常,都会释放锁(对应7情景)

 

补充:

 

问题:目前进入到被synchronized修饰的方法,这个方法里边调用了非synchronized方法,是线程安全的吗?

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 目前进入到被synchronized修饰的方法,这个方法里边调用了非synchronized方法,是线程安全的吗?
 *
 * @author JSON
 */
public class SynchronizedScene8 {
    public static void main(String[] args) {
        new Thread(() -> {
            method1();
        }).start();
 
        new Thread(() -> {
            method1();
        }).start();
    }
 
    public static synchronized void method1() {
        method2();
    }
 
    private static void method2() {
        System.out.println(Thread.currentThread().getName() + "进入非Synchronized方法");
        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
 
        System.out.println(Thread.currentThread().getName() + "结束非Synchronized方法");
    }
}

 

结论:这样是线程安全的

 

四、性质

 

1、可重入

 

指的是同一线程的外层函数获取锁之后,内层函数可以直接再次获取该锁

 

Java典型的可重入锁:synchronized、ReentrantLock

 

好处:避免死锁,提升封装性

 

粒度:线程而非调用

 

  • 情况1:证明同一方法是可重入的
  • 情况2:证明可重入不要求是同一方法
  • 情况3:证明可重入不要求是同一类中的

 

2、不可中断

 

一旦这个锁被别的线程获取了,如果我现在想获得,我只能选择等待或者阻塞,直到别的线程释放这个锁,如果别的线程永远不释放锁,那么我只能永远的等待下去。

 

相比之下,Lock类可以拥有中断的能力,第一点:如果我觉得我等待的时间太长了,有权中断现在已经获取到锁的线程执行;第二点:如果我觉得我等待的时间太长了不想再等了,也可以退出。

 

五、原理

 

1、加解锁原理(现象、时机、深入JVM看字节码)

 

现象:每一个类的实例对应一把锁,每一个synchronized方法都必须首先获得调用该方法的类的实例的锁,方能执行,否则就会阻塞,方法执行完成或者抛出异常,锁被释放,被阻塞线程才能获取到该锁,执行。

 

获取和释放锁的时机:内置锁或监视器锁

 

package cn.jsonshare.java.base.synchronizedtest;
 
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
 
/**
 * method1 等价于 method2
 *
 * @author JSON
 * @date 2019-08-29
 */
public class SynchronizedToLock1 {
    Lock lock = new ReentrantLock();
 
    public synchronized void method1(){
        System.out.println("执行method1");
    }
 
    public void method2(){
        lock.lock();
        try {
            System.out.println("执行method2");
        }catch (Exception e){
            e.printStackTrace();
        }finally {
            lock.unlock();
        }
    }
 
    public static void main(String[] args) {
        SynchronizedToLock1 sl = new SynchronizedToLock1();
 
        // method1 等价于 method2
        sl.method1();
        sl.method2();
    }
}

 

深入JVM看字节码:

 

...
monitorenter指令
...
monitorexit指令
...

 

2、可重入原理(加锁次数计数器)

 

JVM负责跟踪对象被加锁的次数

 

线程第一次给对象加锁的时候,计数变为1,每当这个相同的线程在此对象上再次获得锁时,计数会递增

 

每当任务离开时,计数递减,当计数为0的时候,锁被完全释放

 

3、可见性原理(内存模型)

 

Java内存模型

 

 

线程A向线程B发送数据的过程(JMM控制)

 

 

synchronized关键字实现可见性:

 

被synchronized修饰,那么执行完成后,对对象所做的任何修改都要在释放锁之前,都要从线程内存写入到主内存,所以主内存中的数据是最新的。

 

六、缺陷

 

1、效率低

 

1)、锁的释放情况少(线程执行完成或者异常情况释放)

2)、试图获得锁时不能设定超时(只能等待)

3)、不能中断一个正在试图获得锁的线程(不能中断)

 

2、不够灵活

 

加锁和释放的时机比较单一,每个锁仅有单一的条件(某个对象),可能是不够的

 

比如:读写锁更灵活

 

3、无法预判是否成功获取到锁

 

七、常见问题

 

1、synchronized关键字注意点:

 

  • 锁对象不能为空
  • 作用域不宜过大
  • 避免死锁

 

2、如何选择Lock和synchronized关键字?

 

总结建议(优先避免出错的原则):

 

  • 如果可以的话,尽量优先使用java.util.concurrent各种类(不需要考虑同步工作,不容易出错)
  • 优先使用synchronized,这样可以减少编写代码的量,从而可以减少出错率
  • 若用到Lock或Condition独有的特性,才使用Lock或Condition

 

八、总结

 

 

一句话总结synchronized:

 

JVM会自动通过使用monitor来加锁和解锁,保证了同一时刻只有一个线程可以执行指定的代码,从而保证线程安全,同时具有可重入和不可中断的特性。

相关文章
|
13天前
|
Java 开发者
Java 函数式编程全解析:静态方法引用、实例方法引用、特定类型方法引用与构造器引用实战教程
本文介绍Java 8函数式编程中的四种方法引用:静态、实例、特定类型及构造器引用,通过简洁示例演示其用法,帮助开发者提升代码可读性与简洁性。
|
18天前
|
Java 开发者
Java并发编程:CountDownLatch实战解析
Java并发编程:CountDownLatch实战解析
309 100
|
22天前
|
机器学习/深度学习 JSON Java
Java调用Python的5种实用方案:从简单到进阶的全场景解析
在机器学习与大数据融合背景下,Java与Python协同开发成为企业常见需求。本文通过真实案例解析5种主流调用方案,涵盖脚本调用到微服务架构,助力开发者根据业务场景选择最优方案,提升开发效率与系统性能。
203 0
|
22天前
|
安全 Java API
Java SE 与 Java EE 区别解析及应用场景对比
在Java编程世界中,Java SE(Java Standard Edition)和Java EE(Java Enterprise Edition)是两个重要的平台版本,它们各自有着独特的定位和应用场景。理解它们之间的差异,对于开发者选择合适的技术栈进行项目开发至关重要。
104 1
|
1月前
|
Java
Java的CAS机制深度解析
CAS(Compare-And-Swap)是并发编程中的原子操作,用于实现多线程环境下的无锁数据同步。它通过比较内存值与预期值,决定是否更新值,从而避免锁的使用。CAS广泛应用于Java的原子类和并发包中,如AtomicInteger和ConcurrentHashMap,提升了并发性能。尽管CAS具有高性能、无死锁等优点,但也存在ABA问题、循环开销大及仅支持单变量原子操作等缺点。合理使用CAS,结合实际场景选择同步机制,能有效提升程序性能。
|
2月前
|
存储 缓存 Java
Java数组全解析:一维、多维与内存模型
本文深入解析Java数组的内存布局与操作技巧,涵盖一维及多维数组的声明、初始化、内存模型,以及数组常见陷阱和性能优化。通过图文结合的方式帮助开发者彻底理解数组本质,并提供Arrays工具类的实用方法与面试高频问题解析,助你掌握数组核心知识,避免常见错误。
|
2月前
|
存储 缓存 算法
Java数据类型与运算符深度解析
本文深入解析Java中容易混淆的基础知识,包括八大基本数据类型(如int、Integer)、自动装箱与拆箱机制,以及运算符(如&与&&)的使用区别。通过代码示例剖析内存布局、取值范围及常见陷阱,帮助开发者写出更高效、健壮的代码,并附有面试高频问题解析,夯实基础。
|
2月前
|
算法 Java 测试技术
零基础学 Java: 从语法入门到企业级项目实战的详细学习路线解析
本文为零基础学习者提供完整的Java学习路线,涵盖语法基础、面向对象编程、数据结构与算法、多线程、JVM原理、Spring框架、Spring Boot及项目实战,助你从入门到进阶,系统掌握Java编程技能,提升实战开发能力。
129 0
|
2月前
|
缓存 安全 Java
Java并发性能优化|读写锁与互斥锁解析
本文深入解析Java中两种核心锁机制——互斥锁与读写锁,通过概念对比、代码示例及性能测试,揭示其适用场景。互斥锁适用于写多或强一致性场景,读写锁则在读多写少时显著提升并发性能。结合锁降级、公平模式等高级特性,助你编写高效稳定的并发程序。
142 0
|
2月前
|
安全 Oracle Java
JAVA高级开发必备·卓伊凡详细JDK、JRE、JVM与Java生态深度解析-形象比喻系统理解-优雅草卓伊凡
JAVA高级开发必备·卓伊凡详细JDK、JRE、JVM与Java生态深度解析-形象比喻系统理解-优雅草卓伊凡
201 0
JAVA高级开发必备·卓伊凡详细JDK、JRE、JVM与Java生态深度解析-形象比喻系统理解-优雅草卓伊凡

热门文章

最新文章

推荐镜像

更多
  • DNS