Java之戳中痛点之 synchronized 深度解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Java之戳中痛点之 synchronized 深度解析

概览:

 

  • 简介:作用、地位、不控制并发的影响
  • 用法:对象锁和类锁
  • 多线程访问同步方法的7种情况
  • 性质:可重入、不可中断
  • 原理:加解锁原理、可重入原理、可见性原理
  • 缺陷:效率低、不够灵活、无法预判是否成功获取到锁
  • 如何选择Lock或Synchronized
  • 如何提高性能、JVM如何决定哪个线程获取锁
  • 总结

 

后续会有代码演示,测试环境 JDK8、IDEA

 

一、简介

 

1、作用

 

能够保证在同一时刻最多只有一个线程执行该代码,以保证并发安全的效果。

 

2、地位

 

  • Synchronized是Java关键字,Java原生支持
  • 最基本的互斥同步手段
  • 并发编程的元老级别

 

3、不控制并发的影响

 

测试:两个线程同时a++,猜一下结果

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 不使用synchronized,两个线程同时a++
 *
 * @author JSON
 */
public class SynchronizedTest1 implements Runnable{
    static SynchronizedTest1 st = new SynchronizedTest1();
 
    static int a = 0;
 
    /**
     * 不使用synchronized,两个线程同时a++
     */
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(st);
        Thread t2 = new Thread(st);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println(a);
    }
 
    @Override
    public void run(){
        for(int i=0; i<10000; i++){
            a++;
        }
    }
}

 

预期是20000,但多次执行的结果都小于20000

 

10108
11526
10736
...

 

二、用法:对象锁和类锁

 

1、对象锁

 

  • 代码块形式:手动指定锁对象
  • 方法锁形式:synchronized修饰方法,锁对象默认为this

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 对象锁实例: 代码块形式
 *
 * @author JSON
 */
public class SynchronizedTest2 implements Runnable{
    static SynchronizedTest2 st = new SynchronizedTest2();
 
    public static void main(String[] args) {
        Thread t1 = new Thread(st);
        Thread t2 = new Thread(st);
        t1.start();
        t2.start();
        while(t1.isAlive() || t2.isAlive()){
 
        }
        System.out.println("run over");
 
    }
 
    @Override
    public void run(){
        synchronized (this){
            System.out.println("开始执行:" + Thread.currentThread().getName());
            try {
                // 模拟执行内容
                Thread.sleep(3000);
            }catch (Exception e){
                e.printStackTrace();
            }
            System.out.println("执行结束:" + Thread.currentThread().getName());
        }
    }
}

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 对象锁实例:synchronized方法
 * @author JSON
 */
public class SynchronizedTest3 implements Runnable{
    static SynchronizedTest3 st = new SynchronizedTest3();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(st);
        Thread t2 = new Thread(st);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method();
    }
 
    public synchronized void method(){
        System.out.println("开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("执行结束:" + Thread.currentThread().getName());
    }
}

 

结果:

 

开始执行:Thread-0
执行结束:Thread-0
开始执行:Thread-1
执行结束:Thread-1
run over

 

2、类锁

 

概念:Java类可能有多个对象,但只有一个Class对象

 

本质:所谓的类锁,不过是Class对象的锁而已

 

用法和效果:类锁只能在同一时刻被一个对象拥有

 

形式1:synchronized加载static方法上

 

形式2:synchronized(*.class)代码块

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 类锁:synchronized加载static方法上
 *
 * @author JSON
 */
public class SynchronizedTest4 implements Runnable{
 
    static SynchronizedTest4 st1 = new SynchronizedTest4();
    static SynchronizedTest4 st2 = new SynchronizedTest4();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(st1);
        Thread t2 = new Thread(st2);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method();
    }
 
    public static synchronized void method(){
        System.out.println("开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("执行结束:" + Thread.currentThread().getName());
    }
}

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 类锁:synchronized(*.class)代码块
 *
 * @author JSON
 */
public class SynchronizedTest5 implements Runnable{
    static SynchronizedTest4 st1 = new SynchronizedTest4();
    static SynchronizedTest4 st2 = new SynchronizedTest4();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(st1);
        Thread t2 = new Thread(st2);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method();
    }
 
    public void method(){
        synchronized(SynchronizedTest5.class){
            System.out.println("开始执行:" + Thread.currentThread().getName());
            try {
                // 模拟执行内容
                Thread.sleep(3000);
            }catch (Exception e){
                e.printStackTrace();
            }
            System.out.println("执行结束:" + Thread.currentThread().getName());
        }
    }
}

 

结果:

 

开始执行:Thread-0
执行结束:Thread-0
开始执行:Thread-1
执行结束:Thread-1
run over

三、多线程访问同步方法的7种情况

 

  1. 两个线程同时访问一个对象的相同的synchronized方法
  2. 两个线程同时访问两个对象的相同的synchronized方法
  3. 两个线程同时访问两个对象的相同的static的synchronized方法
  4. 两个线程同时访问同一对象的synchronized方法与非synchronized方法
  5. 两个线程访问同一对象的不同的synchronized方法
  6. 两个线程同时访问同一对象的static的synchronized方法与非static的synchronized方法
  7. 方法抛出异常后,会释放锁吗

 

仔细看下面示例代码结果输出的结果,注意输出时间间隔,来预测结论

 

场景1:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 两个线程同时访问一个对象的相同的synchronized方法
 *
 * @author JSON
 */
public class SynchronizedScene1 implements Runnable{
    static SynchronizedScene1 ss = new SynchronizedScene1();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss);
        Thread t2 = new Thread(ss);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method();
    }
 
    public synchronized void method(){
        System.out.println("开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("执行结束:" + Thread.currentThread().getName());
    }
}

 

场景2:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 两个线程同时访问两个对象的相同的synchronized方法
 *
 * @author JSON
 */
public class SynchronizedScene2 implements Runnable{
    static SynchronizedScene2 ss1 = new SynchronizedScene2();
    static SynchronizedScene2 ss2 = new SynchronizedScene2();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss1);
        Thread t2 = new Thread(ss2);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method();
    }
 
    public synchronized void method(){
        System.out.println("开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("执行结束:" + Thread.currentThread().getName());
    }
}

 

场景3:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 两个线程同时访问两个对象的相同的static的synchronized方法
 *
 * @author JSON
 */
public class SynchronizedScene3 implements Runnable{
    static SynchronizedScene3 ss1 = new SynchronizedScene3();
    static SynchronizedScene3 ss2 = new SynchronizedScene3();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss1);
        Thread t2 = new Thread(ss2);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method();
    }
 
    public synchronized static void method(){
        System.out.println("开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("执行结束:" + Thread.currentThread().getName());
    }
}

 

场景4:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 两个线程同时访问同一对象的synchronized方法与非synchronized方法
 *
 * @author JSON
 */
public class SynchronizedScene4 implements Runnable{
    static SynchronizedScene4 ss1 = new SynchronizedScene4();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss1);
        Thread t2 = new Thread(ss1);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        // 模拟两个线程同时访问 synchronized方法与非synchronized方法
        if(Thread.currentThread().getName().equals("Thread-0")){
            method1();
        }else{
            method2();
        }
    }
 
    public void method1(){
        System.out.println("method1开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("method1执行结束:" + Thread.currentThread().getName());
    }
 
    public synchronized void method2(){
        System.out.println("method2开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("method2执行结束:" + Thread.currentThread().getName());
    }
}

 

场景5:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 两个线程访问同一对象的不同的synchronized方法
 *
 * @author JSON
 */
public class SynchronizedScene5 implements Runnable{
    static SynchronizedScene5 ss1 = new SynchronizedScene5();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss1);
        Thread t2 = new Thread(ss1);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        // 模拟两个线程同时访问不同的synchronized方法
        if(Thread.currentThread().getName().equals("Thread-0")){
            method1();
        }else{
            method2();
        }
    }
 
    public synchronized void method1(){
        System.out.println("method1开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("method1执行结束:" + Thread.currentThread().getName());
    }
 
    public synchronized void method2(){
        System.out.println("method2开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("method2执行结束:" + Thread.currentThread().getName());
    }
}

 

场景6:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 两个线程同时访问同一对象的static的synchronized方法与非static的synchronized方法
 *
 * @author JSON
 */
public class SynchronizedScene6 implements Runnable{
    static SynchronizedScene6 ss1 = new SynchronizedScene6();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss1);
        Thread t2 = new Thread(ss1);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        // 模拟两个线程同时访问static的synchronized方法与非static的synchronized方法
        if(Thread.currentThread().getName().equals("Thread-0")){
            method1();
        }else{
            method2();
        }
    }
 
    public static synchronized void method1(){
        System.out.println("method1开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("method1执行结束:" + Thread.currentThread().getName());
    }
 
    public synchronized void method2(){
        System.out.println("method2开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println("method2执行结束:" + Thread.currentThread().getName());
    }
}

 

场景7:

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 方法抛出异常后,会释放锁吗
 *
 * @author JSON
 */
public class SynchronizedScene7 implements Runnable{
    static SynchronizedScene7 ss1 = new SynchronizedScene7();
 
    public static void main(String[] args) throws Exception{
        Thread t1 = new Thread(ss1);
        Thread t2 = new Thread(ss1);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("run over");
    }
 
    @Override
    public void run(){
        method1();
    }
 
    public synchronized void method1(){
        System.out.println("method1开始执行:" + Thread.currentThread().getName());
        try {
            // 模拟执行内容
            Thread.sleep(3000);
        }catch (Exception e){
            e.printStackTrace();
        }
        // 模拟异常
        throw new RuntimeException();
        //System.out.println("method1执行结束:" + Thread.currentThread().getName());
    }
}

总结:

 

1、两个线程同时访问一个对象的相同的synchronized方法

同一实例拥有同一把锁,其他线程必然等待,顺序执行

 

2、两个线程同时访问两个对象的相同的synchronized方法

不同的实例拥有的锁是不同的,所以不影响,并行执行

 

3、两个线程同时访问两个对象的相同的static的synchronized方法

静态同步方法,是类锁,所有实例是同一把锁,其他线程必然等待,顺序执行

 

4、两个线程同时访问同一对象的synchronized方法与非synchronized方法

 

非synchronized方法不受影响,并行执行

 

5、两个线程访问同一对象的不同的synchronized方法

 

同一实例拥有同一把锁,所以顺序执行(说明:锁的是this对象==同一把锁)

 

6、两个线程同时访问同一对象的static的synchronized方法与非static的synchronized方法

 

static同步方法是类锁,非static是对象锁,原理上是不同的锁,所以不受影响,并行执行

 

7、方法抛出异常后,会释放锁吗

 

会自动释放锁,这里区别Lock,Lock需要显示的释放锁

 

3个核心思想:

 

  • 一把锁只能同时被一个线程获取,没有拿到锁的线程必须等待(对应1、5的情景)
  • 每个实例都对应有自己的一把锁,不同的实例之间互不影响;例外:锁对象是*.class以及synchronized被static修饰的时候,所有对象共用同一把锁(对应2、3、4、6情景)
  • 无论是方法正常执行完毕还是方法抛出异常,都会释放锁(对应7情景)

 

补充:

 

问题:目前进入到被synchronized修饰的方法,这个方法里边调用了非synchronized方法,是线程安全的吗?

 

package cn.jsonshare.java.base.synchronizedtest;
 
/**
 * 目前进入到被synchronized修饰的方法,这个方法里边调用了非synchronized方法,是线程安全的吗?
 *
 * @author JSON
 */
public class SynchronizedScene8 {
    public static void main(String[] args) {
        new Thread(() -> {
            method1();
        }).start();
 
        new Thread(() -> {
            method1();
        }).start();
    }
 
    public static synchronized void method1() {
        method2();
    }
 
    private static void method2() {
        System.out.println(Thread.currentThread().getName() + "进入非Synchronized方法");
        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
 
        System.out.println(Thread.currentThread().getName() + "结束非Synchronized方法");
    }
}

 

结论:这样是线程安全的

 

四、性质

 

1、可重入

 

指的是同一线程的外层函数获取锁之后,内层函数可以直接再次获取该锁

 

Java典型的可重入锁:synchronized、ReentrantLock

 

好处:避免死锁,提升封装性

 

粒度:线程而非调用

 

  • 情况1:证明同一方法是可重入的
  • 情况2:证明可重入不要求是同一方法
  • 情况3:证明可重入不要求是同一类中的

 

2、不可中断

 

一旦这个锁被别的线程获取了,如果我现在想获得,我只能选择等待或者阻塞,直到别的线程释放这个锁,如果别的线程永远不释放锁,那么我只能永远的等待下去。

 

相比之下,Lock类可以拥有中断的能力,第一点:如果我觉得我等待的时间太长了,有权中断现在已经获取到锁的线程执行;第二点:如果我觉得我等待的时间太长了不想再等了,也可以退出。

 

五、原理

 

1、加解锁原理(现象、时机、深入JVM看字节码)

 

现象:每一个类的实例对应一把锁,每一个synchronized方法都必须首先获得调用该方法的类的实例的锁,方能执行,否则就会阻塞,方法执行完成或者抛出异常,锁被释放,被阻塞线程才能获取到该锁,执行。

 

获取和释放锁的时机:内置锁或监视器锁

 

package cn.jsonshare.java.base.synchronizedtest;
 
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
 
/**
 * method1 等价于 method2
 *
 * @author JSON
 * @date 2019-08-29
 */
public class SynchronizedToLock1 {
    Lock lock = new ReentrantLock();
 
    public synchronized void method1(){
        System.out.println("执行method1");
    }
 
    public void method2(){
        lock.lock();
        try {
            System.out.println("执行method2");
        }catch (Exception e){
            e.printStackTrace();
        }finally {
            lock.unlock();
        }
    }
 
    public static void main(String[] args) {
        SynchronizedToLock1 sl = new SynchronizedToLock1();
 
        // method1 等价于 method2
        sl.method1();
        sl.method2();
    }
}

 

深入JVM看字节码:

 

...
monitorenter指令
...
monitorexit指令
...

 

2、可重入原理(加锁次数计数器)

 

JVM负责跟踪对象被加锁的次数

 

线程第一次给对象加锁的时候,计数变为1,每当这个相同的线程在此对象上再次获得锁时,计数会递增

 

每当任务离开时,计数递减,当计数为0的时候,锁被完全释放

 

3、可见性原理(内存模型)

 

Java内存模型

 

 

线程A向线程B发送数据的过程(JMM控制)

 

 

synchronized关键字实现可见性:

 

被synchronized修饰,那么执行完成后,对对象所做的任何修改都要在释放锁之前,都要从线程内存写入到主内存,所以主内存中的数据是最新的。

 

六、缺陷

 

1、效率低

 

1)、锁的释放情况少(线程执行完成或者异常情况释放)

2)、试图获得锁时不能设定超时(只能等待)

3)、不能中断一个正在试图获得锁的线程(不能中断)

 

2、不够灵活

 

加锁和释放的时机比较单一,每个锁仅有单一的条件(某个对象),可能是不够的

 

比如:读写锁更灵活

 

3、无法预判是否成功获取到锁

 

七、常见问题

 

1、synchronized关键字注意点:

 

  • 锁对象不能为空
  • 作用域不宜过大
  • 避免死锁

 

2、如何选择Lock和synchronized关键字?

 

总结建议(优先避免出错的原则):

 

  • 如果可以的话,尽量优先使用java.util.concurrent各种类(不需要考虑同步工作,不容易出错)
  • 优先使用synchronized,这样可以减少编写代码的量,从而可以减少出错率
  • 若用到Lock或Condition独有的特性,才使用Lock或Condition

 

八、总结

 

 

一句话总结synchronized:

 

JVM会自动通过使用monitor来加锁和解锁,保证了同一时刻只有一个线程可以执行指定的代码,从而保证线程安全,同时具有可重入和不可中断的特性。

相关文章
|
3天前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
47 9
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
11天前
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
Java 并发编程——volatile 关键字解析
|
11天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
8天前
|
Java 数据库连接 Spring
反射-----浅解析(Java)
在java中,我们可以通过反射机制,知道任何一个类的成员变量(成员属性)和成员方法,也可以堆任何一个对象,调用这个对象的任何属性和方法,更进一步我们还可以修改部分信息和。
|
11天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
35 3
|
1月前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
1月前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
87 2
|
10天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
10天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

热门文章

最新文章

推荐镜像

更多