Redis 数据结构操作入门

本文涉及的产品
云数据库 Redis 版,社区版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis 数据结构操作入门

redis

日常操作

往日,大量的指令让我们无法只靠脑袋来完全的记住,于是乎,编写一个日常的redis常用命令文档,以备不时之需.

Redis 键(key)

  • keys * 查看当前库所有key    (匹配:keys *1)
  • existskey判断某个key是否存在
  • type key 查看你的key是什么类型
  • del key 删除指定的key数据
  • unlink key   根据value选择非阻塞删除,仅将keys从keyspace元数据中删除,真正的删除会在后续异步操作。
  • expire key 10   10秒钟:为给定的key设置过期时间
  • ttl key 查看还有多少秒过期,-1表示永不过期,-2表示已过期
  • select命令切换数据库
  • dbsize查看当前数据库的key的数量
  • flushdb清空当前库
  • flushall通杀全部库

Redis 五个基本类型

字符串(String)

String是Redis最基本的类型,你可以理解成与Memcached一模一样的类型,一个key对应一个value。
String类型是二进制安全的。意味着Redis的string可以包含任何数据。比如jpg图片或者序列化的对象。
String类型是Redis最基本的数据类型,一个Redis中字符串value最多可以是512M

常用命令

set   添加键值对
*NX:当数据库中key不存在时,可以将key-value添加数据库
*XX:当数据库中key存在时,可以将key-value添加数据库,与NX参数互斥
*EX:key的超时秒数
*PX:key的超时毫秒数,与EX互斥


get   查询对应键值 append  将给定的 追加到原值的末尾
strlen 获得值的长度 setnx  只有在 key 不存在时    设置 key 的值
incr   将 key 中储存的数字值增1 只能对数字值操作,如果为空,新增值为1
decr   将 key中储存的数字值减1 只能对数字值操作,如果为空,新增值为-1
incrby / decrby  <步长>将 key 中储存的数字值增减。自定义步长。

原子性   所谓原子操作是指不会被线程调度机制打断的操作; 这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。 (1)在单线程中,
能够在单条指令中完成的操作都可以认为是"原子操作",因为中断只能发生于指令之间。
在多线程中,不能被其它进程(线程)打断的操作就叫原子操作。

mset    同时设置一个或多个 key-value对
mget   ..... 同时获取一个或多个
value   msetnx   .....  同时设置一个或多个
key-value 对,当且仅当所有给定 key 都不存在。 原子性,有一个失败则都失败
getrange  <起始位置><结束位置> 获得值的范围,类似java中的substring,前包,后包
setrange <起始位置> 用   覆写所储存的字符串值,从<起始位置>开始(索引从0开始)。
setex  <过期时间> 设置键值的同时,设置过期时间,单位秒。 getset
以新换旧,设置了新值同时获得旧值。

数据结构

String的数据结构为简单动态字符串(Simple Dynamic String,缩写SDS)。是可以修改的字符串,内部结构实现上类似于Java的ArrayList,采用预分配冗余空间的方式来减少内存的频繁分配.
内部为当前字符串实际分配的空间capacity一般要高于实际字符串长度len。当字符串长度小于1M时,扩容都是加倍现有的空间,如果超过1M,扩容时一次只会多扩1M的空间。需要注意的是字符串最大长度为512M。

Redis列表(List)

单键多值
Redis 列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边)。
它的底层实际是个双向链表,对两端的操作性能很高,通过索引下标的操作中间的节点性能会较差。

常用命令

lpush/rpush   .... 从左边/右边插入一个或多个值。
lpop/rpop  从左边/右边吐出一个值。值在键在,值光键亡。
rpoplpush  从列表右边吐出一个值,插到列表左边。
lrange 按照索引下标获得元素(从左到右)
lrange mylist 0 -1   0左边第一个,-1右边第一个,(0-1表示获取所有)
lindex 按照索引下标获得元素(从左到右)
llen 获得列表长度
linsert   before 在的后面插入插入值
lrem 从左边删除n个value(从左到右)
lset将列表key下标为index的值替换成value

数据结构

List的数据结构为快速链表quickList。
首先在列表元素较少的情况下会使用一块连续的内存存储,这个结构是ziplist,也即是压缩列表。
它将所有的元素紧挨着一起存储,分配的是一块连续的内存。
当数据量比较多的时候才会改成quicklist。
因为普通的链表需要的附加指针空间太大,会比较浪费空间。比如这个列表里存的只是int类型的数据,结构上还需要两个额外的指针prev和next。

Redis将链表和ziplist结合起来组成了quicklist。也就是将多个ziplist使用双向指针串起来使用。这样既满足了快速的插入删除性能,又不会出现太大的空间冗余。

Redis集合(Set)

Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。
Redis的Set是string类型的无序集合。它底层其实是一个value为null的hash表,所以添加,删除,查找的复杂度都是O(1)。
一个算法,随着数据的增加,执行时间的长短,如果是O(1),数据增加,查找数据的时间不变

常用命令

sadd  .....
将一个或多个 member 元素加入到集合 key 中,已经存在的 member 元素将被忽略
smembers 取出该集合的所有值。
sismember 判断集合是否为含有该值,有1,没有0
scard返回该集合的元素个数。
srem  .... 删除集合中的某个元素。
spop 随机从该集合中吐出一个值。
srandmember 随机从该集合中取出n个值。不会从集合中删除 。
smove value把集合中一个值从一个集合移动到另一个集合
sinter 返回两个集合的交集元素。
sunion 返回两个集合的并集元素。
sdiff 返回两个集合的差集元素(key1中的,不包含key2中的)

数据结构

Set数据结构是dict字典,字典是用哈希表实现的。
Java中HashSet的内部实现使用的是HashMap,只不过所有的value都指向同一个对象。Redis的set结构也是一样,它的内部也使用hash结构,所有的value都指向同一个内部值。

Redis哈希(Hash)

Redis hash 是一个键值对集合。
Redis hash是一个string类型的field和value的映射表,hash特别适合用于存储对象。
类似Java里面的Map<String,Object>
用户ID为查找的key,存储的value用户对象包含姓名,年龄,生日等信息,如果用普通的key/value结构来存储
主要有以下2种存储方式:

通过 key(用户ID) + field(属性标签) 就可以操作对应属性数据了,既不需要重复存储数据,也不会带来序列化和并发修改控制的问题

hset <key><field><value>给<key>集合中的  <field>键赋值<value>
hget <key1><field>从<key1>集合<field>取出 value 
hmset <key1><field1><value1><field2><value2>... 批量设置hash的值
hexists<key1><field>查看哈希表 key 中,给定域 field 是否存在。 
hkeys <key>列出该hash集合的所有field
hvals <key>列出该hash集合的所有value
hincrby <key><field><increment>为哈希表 key 中的域 field 的值加上增量 1   -1
hsetnx <key><field><value>将哈希表 key 中的域 field 的值设置为 value ,当且仅当域 field 不存在 .
数据结构

Hash类型对应的数据结构是两种:ziplist(压缩列表),hashtable(哈希表)。当field-value长度较短且个数较少时,使用ziplist,否则使用hashtable。

Redis有序集合Zset(sorted set)

Redis有序集合zset与普通集合set非常相似,是一个没有重复元素的字符串集合。
不同之处是有序集合的每个成员都关联了一个评分(score),这个评分(score)被用来按照从最低分到最高分的方式排序集合中的成员。集合的成员是唯一的,但是评分可以是重复了 。
因为元素是有序的, 所以你也可以很快的根据评分(score)或者次序(position)来获取一个范围的元素。
访问有序集合的中间元素也是非常快的,因此你能够使用有序集合作为一个没有重复成员的智能列表

常用命令
zadd  <key><score1><value1><score2><value2>… 
将一个或多个 member 元素及其 score 值加入到有序集 key 当中。
zrange <key><start><stop>  [WITHSCORES]    返回有序集 key中,下标在<start><stop>之间的元素
 带WITHSCORES,可以让分数一起和值返回到结果集。
 
zrangebyscore key minmax [withscores] [limit offset count] 返回有序集 key 中,
所有 score 值介于 min和 max 之间(包括等于 min 或 max )的成员。
有序集成员按 score 值递增(从小到大)次序排列。 
zrevrangebyscore key maxmin [withscores] [limit offset count] 同上,改为从大到小排列。  
zincrby <key><increment><value>      为元素的score加上增量
zrem <key><value>删除该集合下,指定值的元素  zcount <key><min><max>统计该集合,
分数区间内的元素个数 
zrank <key><value>返回该值在集合中的排名,从0开始。
数据结构

SortedSet(zset)是Redis提供的一个非常特别的数据结构,一方面它等价于Java的数据结构Map<String, Double>,可以给每一个元素value赋予一个权重score,另一方面它又类似于TreeSet,内部的元素会按照权重score进行排序,可以得到每个元素的名次,还可以通过score的范围来获取元素的列表。
zset底层使用了两个数据结构
(1)hash,hash的作用就是关联元素value和权重score,保障元素value的唯一性,可以通过元素value找到相应的score值。
(2)跳跃表,跳跃表的目的在于给元素value排序,根据score的范围获取元素列表。

Redis新数据类型

Bitmaps

现代计算机用二进制(位) 作为信息的基础单位, 1个字节等于8位, 例如“abc”字符串是由3个字节组成, 但实际在计算机存储时将其用二进制表示, “abc”分别对应的ASCII码分别是97、 98、 99, 对应的二进制分别是01100001、 01100010和01100011,

合理地使用操作位能够有效地提高内存使用率和开发效率。
Redis提供了Bitmaps这个“数据类型”可以实现对位的操作:
(1) Bitmaps本身不是一种数据类型, 实际上它就是字符串(key-value) , 但是它可以对字符串的位进行操作。
(2) Bitmaps单独提供了一套命令, 所以在Redis中使用Bitmaps和使用字符串的方法不太相同。 可以把Bitmaps想象成一个以位为单位的数组, 数组的每个单元只能存储0和1, 数组的下标在Bitmaps中叫做偏移量。

命令

setbit

setbit<key><offset><value>设置Bitmaps中某个偏移量的值(0或1)
*offset:偏移量从0开始

实例
每个独立用户是否访问过网站存放在Bitmaps中, 将访问的用户记做1, 没有访问的用户记做0, 用偏移量作为用户的id。

getbit

getbit<key><offset>获取Bitmaps中某个偏移量的值
获取键的第offset位的值(从0开始算)

实例
获取id=8的用户是否在2020-11-06这天访问过, 返回0说明没有访问过

bitcount
统计字符串被设置为1的bit数。一般情况下,给定的整个字符串都会被进行计数,通过指定额外的 start 或 end 参数,可以让计数只在特定的位上进行。start 和 end 参数的设置,都可以使用负数值:比如 -1 表示最后一个位,而 -2 表示倒数第二个位,start、end 是指bit组的字节的下标数,二者皆包含。

bitcount<key>[start end] 统计字符串从start字节到end字节比特值为1的数量

例子 : 计算2022-11-06这天的独立访问用户数量
start和end代表起始和结束字节数, 下面操作计算用户id在第1个字节到第3个字节之间的独立访问用户数, 对应的用户id是11, 15, 19。

Bitmaps与set对比

假设网站有1亿用户, 每天独立访问的用户有5千万, 如果每天用集合类型和Bitmaps分别存储活跃用户可以得到表
set和Bitmaps存储一天活跃用户对比

集合类型    64位       50000000 64位*50000000 = 400MB

Bitmaps 1位 100000000 1位*100000000 = 12.5MB

很明显, 这种情况下使用Bitmaps能节省很多的内存空间, 尤其是随着时间推移节省的内存还是非常可观的
set和Bitmaps存储独立用户空间对比 一天 一个月 一年

集合类型 400MB    12GB 144GB
Bitmaps 12.5MB 375MB 4.5GB

但Bitmaps并不是万金油, 假如该网站每天的独立访问用户很少, 例如只有10万(大量的僵尸用户) , 那么两者的对比如下表所示, 很显然, 这时候使用Bitmaps就不太合适了, 因为基本上大部分位都是0。
set和Bitmaps存储一天活跃用户对比(独立用户比较少)

数据类型 每个userid占用空间 需要存储的用户量 全部内存量
集合类型 64位 100000 64位*100000 = 800KB
Bitmaps 1位 100000000 1位*100000000 = 12.5MB

HyperLogLog

在工作当中,我们经常会遇到与统计相关的功能需求,比如统计网站PV(PageView页面访问量),可以使用Redis的incr、incrby轻松实现。
但像UV(UniqueVisitor,独立访客)、独立IP数、搜索记录数等需要去重和计数的问题如何解决?这种求集合中不重复元素个数的问题称为基数问题。
解决基数问题有很多种方案:
(1)数据存储在MySQL表中,使用distinct count计算不重复个数
(2)使用Redis提供的hash、set、bitmaps等数据结构来处理
以上的方案结果精确,但随着数据不断增加,导致占用空间越来越大,对于非常大的数据集是不切实际的。
能否能够降低一定的精度来平衡存储空间?Redis推出了HyperLogLog
Redis HyperLogLog 是用来做基数统计的算法,HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定的、并且是很小的。
在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数。这和计算基数时,元素越多耗费内存就越多的集合形成鲜明对比。
但是,因为 HyperLogLog 只会根据输入元素来计算基数,而不会储存输入元素本身,所以 HyperLogLog 不能像集合那样,返回输入的各个元素。

什么是基数?
比如数据集 {1, 3, 5, 7, 5, 7, 8}, 那么这个数据集的基数集为 {1, 3, 5 ,7, 8}, 基数(不重复元素)为5。 基数估计就是在误差可接受的范围内,快速计算基数。

命令

pfadd

pfadd < element> [element ...]   添加指定元素到 HyperLogLog 中

将所有元素添加到指定HyperLogLog数据结构中。如果执行命令后HLL估计的近似基数发生变化,则返回1,否则返回0。

pfcount
pfcount [key ...] 计算HLL的近似基数,可以计算多个HLL,比如用HLL存储每天的UV,计算一周的UV可以使用7天的UV合并计算即可

Geospatial

Redis 3.2 中增加了对GEO类型的支持。GEO,Geographic,地理信息的缩写。该类型,就是元素的2维坐标,在地图上就是经纬度。redis基于该类型,提供了经纬度设置,查询,范围查询,距离查询,经纬度Hash等常见操作。

命令

geoadd
geoadd< longitude> [longitude latitude member...]   添加地理位置(经度,纬度,名称)

实例
geoadd china:city 121.47 31.23 shanghai
geoadd china:city 106.50 29.53 chongqing 114.05 22.52 shenzhen 116.38 39.90 beijing

两极无法直接添加,一般会下载城市数据,直接通过 Java 程序一次性导入。
有效的经度从 -180 度到 180 度。有效的纬度从 -85.05112878 度到 85.05112878 度。
当坐标位置超出指定范围时,该命令将会返回一个错误。
已经添加的数据,是无法再次往里面添加的。

geopos
geopos   [member...]  获得指定地区的坐标值


geodist
geodist  [m|km|ft|mi ]  获取两个位置之间的直线距离

获取两个位置之间的直线距离

单位:
m 表示单位为米[默认值]。
km 表示单位为千米。
mi 表示单位为英里。
ft 表示单位为英尺。
如果用户没有显式地指定单位参数, 那么 GEODIST 默认使用米作为单位

georadius

georadius< longitude>radius  m|km|ft|mi   以给定的经纬度为中心,找出某一半径内的元素,经度 纬度 距离 单位

实例

以上便是redis数据结构的应用场景和常用命令和实例.需要用到的时候来翻阅一手,解决背书烦恼

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
10天前
|
存储 监控 NoSQL
Redis处理大量数据主要依赖于其内存存储结构、高效的数据结构和算法,以及一系列的优化策略
【5月更文挑战第15天】Redis处理大量数据依赖内存存储、高效数据结构和优化策略。选择合适的数据结构、利用批量操作减少网络开销、控制批量大小、使用Redis Cluster进行分布式存储、优化内存使用及监控调优是关键。通过这些方法,Redis能有效处理大量数据并保持高性能。
33 0
|
1天前
|
存储 JSON NoSQL
Redis数据结构介绍及Redis的基本数据类型
Redis数据结构介绍及Redis的基本数据类型
9 3
|
2天前
|
NoSQL Java 网络安全
在spring中操作Redis
在spring中操作Redis
14 0
|
2天前
|
存储 NoSQL 程序员
Redis -- 常用数据结构,认识数据类型和编码方式
Redis -- 常用数据结构,认识数据类型和编码方式
13 2
|
10天前
|
存储 NoSQL 算法
Redis源码、面试指南(2)内存编码数据结构(下)
Redis源码、面试指南(2)内存编码数据结构
23 4
|
10天前
|
存储 NoSQL API
Redis源码、面试指南(2)内存编码数据结构(上)
Redis源码、面试指南(2)内存编码数据结构
21 0
|
10天前
|
存储 缓存 NoSQL
Redis源码(1)基本数据结构(下)
Redis源码(1)基本数据结构
15 1
|
10天前
|
NoSQL 安全 算法
Redis源码(1)基本数据结构(中)
Redis源码(1)基本数据结构
37 5
|
1天前
|
缓存 Java 编译器
JavaSE精选-栈和队列
JavaSE精选-栈和队列
7 1
|
2天前
|
缓存 Java 编译器
栈和队列技术文章
栈和队列技术文章